Tags
Language
Tags
April 2024
Su Mo Tu We Th Fr Sa
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4

Wind Turbine Airfoils and Blades : Optimization Design Theory

Posted By: readerXXI
Wind Turbine Airfoils and Blades : Optimization Design Theory

Wind Turbine Airfoils and Blades : Optimization Design Theory
by Jin Chen and Quan Wang
English | 2018 | ISBN: 3110344211 | 393 Pages | PDF | 4 MB

Books specifically on the design of wind turbine airfoils and blades are rare. Most of the previous books on wind turbines focus on wind turbine aerodynamics, including computational fluid dynamics, blade element momentum theory and wind tunnel experiments, etc. This book, however, comprehensively introduces modern design methods for wind turbine airfoils and blades. In addition, relevant topics related to aerodynamic airfoil performance, aerodynamic shape characteristics of blades and aeroelastic structural characteristics, etc. will also be introduced.

Wind Turbine Airfoils and Blades introduces new ideas in the design of wind turbine airfoils and blades based on functional integral theory and the finite element method, accompanied by results from wind tunnel testing. The authors also discuss the optimization of wind turbine blades as well as results from aerodynamic analysis.

This book is divided into eleven chapters. Chapter 1 introduces relevant research on wind turbine airfoils and blades; Chapter 2 introduces the foundations of aerodynamic theory for wind turbine airfoils and the aerodynamic performance prediction method; Chapter 3 introduces integrated expression theory for wind turbine airfoils in detail; Chapter 4 illustrates the theory of parametric optimization for wind turbine airfoils; Chapter 5 introduces the design and manufacture of an airfoil model, experiments on the wind turbine airfoil and data analysis; Chapter 6 illustrates the aerodynamics of wind turbine rotors and tip-loss corrections; Chapter 7 introduces integrated representations for wind turbine blade shapes; Chapter 8 introduces shape optimization of wind turbine blades; Chapter 9 illustrates the structural optimization of composite wind turbine blades; Chapter 10 introduces the analysis of aeroelastic coupling of the wind turbine blades; Chapter 11 introduces the aeroelastic stability analysis of two-dimensional airfoil sections for wind turbine blades.

This book is suitable for researchers and engineers in aeronautics and can be used as a textbook for graduate students.