Tags
Language
Tags
March 2024
Su Mo Tu We Th Fr Sa
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6

Fuzzy-Like Multiple Objective Multistage Decision Making (repost)

Posted By: arundhati
Fuzzy-Like Multiple Objective Multistage Decision Making (repost)

Jiuping Xu, Ziqiang Zeng, "Fuzzy-Like Multiple Objective Multistage Decision Making"
English | ISBN: 3319033972 | 2014 | 400 pages | PDF | 23 MB

Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like uncertainty, including the dynamic machine allocation, closed multiclass queueing networks optimization, inventory management, facilities planning and transportation assignment. A number of real-world engineering case studies are used to illustrate in detail the methodology. With its emphasis on problem-solving and applications, this book is ideal for researchers, practitioners, engineers, graduate students and upper-level undergraduates in applied mathematics, management science, operations research, information system, civil engineering, building construction and transportation optimization