Inorganic Reactions and Methods: Formation of Bonds to O, S, Se, Te, Po (Part 2), Volume 6 By
1998 | 682 Pages | ISBN: 0471246778 | PDF | 150 MB
1998 | 682 Pages | ISBN: 0471246778 | PDF | 150 MB
Boasting numerous industrial applications, inorganic chemistry forms the basis for research into new materials and bioinorganic compounds such as calcium that act as biological catalysts. Now complete, this highly acclaimed series presents current knowledge in all areas of inorganic chemistry, including chemistry of the elements; organometallic, polymeric and solid-state materials; and compounds relevant to bioinorganic chemistry.Content: Chapter 3.7.1 Introduction (pages 1–2): A. D. Norman and W. S. DurfeeChapter 3.7.2.1.2 By Addition to Low?Valent and Unsaturated Metal Complexes (pages 2–3): H. B. AbrahamsonChapter 3.7.2.1.3 By Insertion Into Metal?Ligand Bonds (pages 3–4): W. S. DurfeeChapter 3.7.2.2 From Water and Alcohols (page 4): R. C. Mehrotra and B. S. SaraswatChapter 3.7.2.2.2 By Hydrolysis or Alcoholysis of Metal?Ligand Bonds (pages 4–6): R. C. Mehrotra and B. S. SaraswatChapter 3.7.2.3 From Hydrogen Peroxide and Organic Peroxides (pages 6–7): M. T. PopeChapter 3.7.2.3.2 By Oxidation of the Ligands Coordinated to the Metals (page 7): M. T. PopeChapter 3.7.2.4 From Neutral Oxygen Donor Ligands [Ethers, Aldehydes, Ketones, Pyridine N?Oxides, Phosphine Oxides, Arsine Oxides, and Dialkyl(Aryl) Sulfoxides] (pages 7–8): R. C. Mehrotra and B. S. SaraswatChapter 3.7.2.4.2 By Insertion into the Metal?Ligand Bonds (pages 8–9): R. C. Mehrotra and B. S. SaraswatChapter 3.7.2.5 From Bidentate and Polydentate Oxygen Donor Ligands (From Polyethers and Crown Ethers, Macrocycles, 2,4?Pentanedione, etc.) (pages 9–10): R. C. Mehrotra and B. S. SaraswatChapter 3.7.2.6 From Oxides of the Main Group Elements (pages 10–11): M. T. PopeChapter 3.7.2.6.2 By Reaction with Complexes of the Metals (page 11): M. T. PopeChapter 3.7.2.6.3 By Insertion into Metal?Ligand Bonds (page 11): M. T. PopeChapter 3.7.2.7 From OH?, OR?, O22, O?2 (pages 11–12): M. T. PopeChapter 3.7.2.7.2 By Oxidation of the Metals and their Complexes (page 12): M. T. PopeChapter 3.7.2.8 By Metal Atom and Related Reactions (pages 12–14): K. J. KlabundeChapter 3.7.3 Formation of the Bond Between Sulfur and a Group IB or IIB Element (pages 14–15): J. P. Fackler and K. G. FacklerChapter 3.7.3.1.2 By Reaction with Metal Complexes (page 15): J. P. Fackler and K. G. FacklerChapter 3.7.3.2 From Hydrogen Sulfide, Hydrogen Polysulfides, and Thiols (pages 15–18): J. P. Fackler and K. G. FacklerChapter 3.7.3.3 From Thiocarbonyls, Thioethers, Organic Polysulfides, and Other Sulfur Donor Ligands (pages 18–19): J. P. Fackler and K. G. FacklerChapter 3.7.3.4 From Organic Thio Acids and Other Thio Acids of Main Group Elements (pages 19–20): J. P. Fackler and K. G. FacklerChapter 3.7.3.4.2 By Ligand Replacement Reactions with Complexes of the Metals and by Sulfur Atom Abstraction (pages 20–21): J. P. Fackler and K. G. FacklerChapter 3.7.3.5 From Bidentate and Polydentate Sulfur Donor Atoms (pages 21–22): J. P. Fackler and K. G. FacklerChapter 3.7.3.5.2 By Ligand Substitution Reactions (page 22): J. P. Fackler and K. G. FacklerChapter 3.7.3.6 From Sulfur Containing Anions (S2?, S2?, [HS?], [RS]?) (pages 22–27): P. F. Brandt and T. B. RauchfussChapter 3.7.3.7 By Metal Atom and Related Reactions (page 28): K. J. KlabundeChapter 3.7.4 Formation of the Bond Between Selenium, Tellurium, and Polonium and Group IB or IIB Elements (pages 28–30): E. M. PageChapter 3.7.4.1.2 Formation of the Bond with Tellurium (pages 30–32): E. M. PageChapter 3.7.4.1.3 Electrolytic Reactions Between the Elements (page 32): E. M. PageChapter 3.7.4.2 By Reaction with Group IB or IIB Metal Compounds (pages 33–34): E. M. PageChapter 3.7.4.2.2 Ternary Compounds (pages 34–35): E. M. PageChapter 3.7.4.3 By Reactions of Binary Acids of Selenium and Tellurium and their Derivatives by Reaction with Metal Compounds (pages 35–36): E. M. PageChapter 3.7.4.4 By Reaction of Oxides of Selenium and Tellurium with Metal Compounds (page 37): E. M. PageChapter 3.7.4.5 By Reactions of the Anions and Oxyanions of the Elements with Metal Compounds (pages 37–38): E. M. PageChapter 3.7.4.6 From Donor Ligands Incorporating the Elements Selenium and Tellurium (pages 39–40): E. M. PageChapter 3.7.4.6.1.2 Electrochemically Driven Reactions (page 40): E. M. PageChapter 3.7.4.6.2 By Reactions with Metal Compounds (pages 40–41): E. M. PageChapter 3.7.4.6.2.1 Reaction with Alkali Metal Selenides, Polyselenides, Tellurides, and Polytellurides (pages 41–43): E. M. PageChapter 3.7.4.6.2.2 Reaction with Organochalcogenides (page 43): E. M. PageChapter 3.7.4.6.2.3 Reaction with Organoselenols and Tellurols (page 44): E. M. PageChapter 3.7.4.6.2.4 Reaction with Trimethylsilyl Chalcogenides (pages 45–46): E. M. PageChapter 3.7.4.6.2.5 Reaction with Dialkylselenocarbamates (page 46): E. M. PageChapter 3.7.4.6.2.6 Reaction with Triphenylphosphine Chalcogenides (pages 46–47): E. M. PageChapter 3.7.4.6.2.7 Reaction with Selenocyanate and Selenourea (pages 47–49): E. M. PageChapter 3.7.4.6.2.8 Reaction with Tetrahydroselenophene and Tetrahydrotellurophene and Derivatives (page 49): E. M. PageChapter 3.7.4.6.2.9 Reaction with Miscellaneous Ligands (pages 49–50): E. M. PageChapter 3.7.4.7 By Reaction with Selenium or Tellurium Compounds in Metal?Organic Chemical Vapor Deposition (Mocvd) and Related Reactions (pages 50–53): E. M. PageChapter 3.8.1 Introduction (pages 54–55): A. D. Norman and W. S. DurfeeChapter 3.8.2.1.2 By Addition to Low?Valent and Unsaturated Metal Complexes (pages 55–58): H. B. AbrahamsonChapter 3.8.2.1.3 By Insertion into Metal–Ligand Bonds (pages 58–63): W. S. DurfeeChapter 3.8.2.2 From Water (pages 63–64): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.2.2 By Hydrolysis of Transition and Inner Transition Metal?Ligand Bonds (pages 64–65): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.3 From Hydrogen Peroxide (pages 65–66): M. T. PopeChapter 3.8.2.3.2 By Oxidation of a Ligand Coordinated to a Transition and Inner Transition Metal Complex (Insertion Reaction) (pages 66–67): M. T. Pope, R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.4.2 By Alcoholysis of Transition and Inner Transition Metal?Ligand Bonds (pages 67–69): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.4.3 By Oxidation of Transition and Inner Transition Metal?Ligand Bonds (pages 69–70): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.5 From Organic Peroxides (page 70): M. T. PopeChapter 3.8.2.5.2 By Substitution Reactions of Transition and Inner Transition Metal?Ligand Bonds (pages 70–72): M. T. Pope, R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.6.2 By Insertion into Transition and Inner Transition Metal?Ligand Bonds: R1R2Co (page 72): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.6.3 By Oxidation of the Transition and Inner Transition Metal Complexes (Ligand Degradation, Oxygen Abstraction) (pages 72–73): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.7 From Bidentate and Polydentate Oxygen Donor Ligands (Crown Ethers, Macrocycles, 2,4?Pentanedione, etc.) (pages 73–75): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.7.2 By Oxidation of Transition and Inner Transition Metal Complexes (pages 75–76): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.8 From Main Group Element Oxides (page 76): M. T. PopeChapter 3.8.2.8.2 By Insertion into Transition and Inner Transition Metal Bonds (pages 76–77): M. T. PopeChapter 3.8.2.8.3 By Oxidation of Transition and Inner Transition Metals and their Compounds (pages 77–78): M. T. PopeChapter 3.8.2.9 From Oh?, O2?, O?2, and O2?2 (pages 78–79): M. T. PopeChapter 3.8.2.9.2 By Oxidation of the Transition and Inner Transition Metals and their Complexes (page 79): M. T. PopeChapter 3.8.2.10 From Alkoxide and Carboxylate Anions (pages 79–82): R. C. Mehrotra and B. S. SaraswatChapter 3.8.2.11 From Metal Atom and Related Reactions (page 82): K. J. KlabundeChapter 3.8.2.11.2 Oxidative Addition/Complexation Reactions (page 83): K. J. KlabundeChapter 3.8.2.11.3 Simple Orbital Mixing: Dioxygen and Carbon Dioxide with Metal Atoms (pages 83–84): K. J. KlabundeChapter 3.8.3 Formation of the Sulfur?Transition and Inner?Transition Metal Bond (pages 84–85): J. P. Fackler and K. G. FacklerChapter 3.8.3.1.2 By Reaction with the Transition Metal and Inner Transition Metal Compounds (pages 85–86): J. P. Fackler and K. G. FacklerChapter 3.8.3.2 From Hydrogen Sulfide, Polysulfides, and Thiols (pages 86–89): J. P. Fackler and K. G. FacklerChapter 3.8.3.2.2 By Insertion of Sulfur into Transition and Inner Transition Metal?Ligand Bonds (pages 89–90): J. P. Fackler and K. G. FacklerChapter 3.8.3.2.3 By Oxidation of the Transition Metal and Inner Transition Metal Complexes (page 90): J. P. Fackler and K. G. FacklerChapter 3.8.3.3 From Thioethers, Organic Polysulfides, and other Sulfur Donor Ligands (pages 90–91): J. P. Fackler and K. G. FacklerChapter 3.8.3.4 From Organic Thioacids, Thiophosphates, Xanthates, and other 1,1?Dithio Compounds (See 3.7.3, Table 1) (page 91): J. P. Fackler and K. G. FacklerChapter 3.8.3.4.2 By Ligand Replacement Reactions with Complexes of the Metals (pages 92–96): J. P. Fackler and K. G. FacklerChapter 3.8.3.4.3 By Insertion of Cs2 (or P4S10) into Metal?Ligand Bonds (pages 96–97): J. P. Fackler and K. G. FacklerChapter 3.8.3.5 From Bidentate (Excluding 1,1?Dithiols) and Polydentate Sulfur Donor Ligands (pages 97–98): J. P. Fackler and K. G. FacklerChapter 3.8.3.5.2 By Ligand Substitution Reactions (page 98): J. P. Fackler and K. G. FacklerChapter 3.8.3.6 From Sulfur Anions (S2?, HS?, S2?X, RS?)?Transition and Inner Transition Metal Bonds (pages 98–105): T. B. RauchfussChapter 3.8.3.6.2 With Polysulfido Anions (S2?X) (pages 105–109): T. B. RauchfussChapter 3.8.3.6.3 With Organosulfur Anions [RS]? (pages 109–115): T. B. RauchfussChapter 3.8.3.7 From Metal Atom and Related Reactions (page 115): K. J. KlabundeChapter 3.8.3.7.2 Oxidative Addition/Complexation Reactions (page 116): K. J. KlabundeChapter 3.8.4 Formation of the Selenium–, Tellurium–, and Polonium–Transition and Inner Transition Metal Bond (pages 116–123): P. F. BrandtChapter 3.9.1 Introduction (page 124): M. L. ThompsonChapter 3.9.2 By Reactions of Xenon Fluorides and Oxyfluorides with Oxides and Oxysalts (pages 124–127): M. L. ThompsonChapter 3.9.3 By Reaction of Xenon Fluorides and Oxyfluorides with Oxyacids and their Derivatives1 (pages 127–129): M. L. ThompsonChapter 3.9.4 Bonds Between Oxygen and Krypton or Radon (page 129): M. L. ThompsonChapter 3.10.1 Introduction (pages 130–132): A. D. Norman and M. O'KeeffeChapter 3.10.1.1.2 External Equilibrium with Oxygen Fugacity (pages 132–133): M. O'KeeffeChapter 3.10.1.1.3 Relations Between Nonstoichiometry and Physical Properties (pages 133–134): M. O'KeeffeChapter 3.10.1.2 Nonstoichiometry and Shear Planes (page 134): C. R. A. CatlowChapter 3.10.1.2.1 Introduction (pages 134–135): C. R. A. CatlowChapter 3.10.1.2.2 Structural Properties (pages 135–137): C. R. A. CatlowChapter 3.10.1.2.3 Stability (pages 137–141): C. R. A. CatlowChapter 3.10.1.3 Extended Defects (pages 141–143): R. J. D. TilleyChapter 3.10.1.3.2 Tunnel and Pentagonal Column Phases (pages 143–146): R. J. D. TilleyChapter 3.10.1.3.3 Chemical Twinning and Related Structures (pages 146–148): R. J. D. TilleyChapter 3.10.1.4 Coherent Intergrowth (pages 149–150): R. J. D. TilleyChapter 3.10.1.4.2 Disordered Extended Defects (pages 150–151): R. J. D. TilleyChapter 3.10.1.5 Classification of Nonstoichiometric Oxides (pages 151–152): A. K. Cheetham and R. J. D. TilleyChapter 3.10.1.5.1 Oxide Phases with Narrow Composition Ranges (pages 152–153): A. K. Cheetham and R. J. D. TilleyChapter 3.10.1.5.2 Grossly Nonstoichiometric Phases (pages 153–154): A. K. Cheetham and R. J. D. TilleyChapter 3.10.1.5.3 Homologous Series of Metal Oxides (page 154): A. K. Cheetham and R. J. D. TilleyChapter 3.10.1.5.4 Coherently Intergrown Structures (page 155): A. K. Cheetham and R. J. D. TilleyChapter 3.10.1.5.5 Oxides with Modulated Structures (pages 155–157): A. K. Cheetham and R. J. D. TilleyChapter 3.10.2 Stable Bivariant Oxide Phases: Nonstoichiometric Oxides Proper (pages 157–158): L. E. ConroyChapter 3.10.2.2 Binary Oxides with a Wide Composition Range (pages 158–160): L. EyringChapter 3.10.2.2.2 Oxygen?Deficient, Fluorite?Related Structures: Lanthanide Oxides (Ce, Pr, and Tb Higher Oxides) (pages 160–165): L EyringChapter 3.10.2.2.3 Oxygen?Excess Fluorite Structures, UO2+? (pages 165–166): L. EyringChapter 3.10.2.3 Multiple Oxides with Point Defect and Defect Complex Equilibria (pages 166–167): P. K. Gallagher and E. M. GundlachChapter 3.10.2.3.2 Point Defect Nonstoichiometry in Spinels and Related Oxides (pages 167–170): P. K. Gallagher and E. M. GundlachChapter 3.10.2.3.3 Wide?Range Nonstoichiometry: Perovskite?Derived Structures (pages 170–171): P. K. Gallagher and E. M. GundlachChapter 3.10.2.3.4 Wide?Range Nonstoichiometry: Oxygen?Deficient Fluorite Structures1,2 (pages 172–173): P. K. Gallagher and E. M. GundlachChapter 3.10.2.3.5 Wide?Range Nonstoichiometry: Mixed Cation Oxides; Induced Valence Effects by Substantial Substitution of Cations Having Different Valency (pages 173–175): P. K. Gallagher and E. M. GundlachChapter 3.10.3 Operationally Nonstoichiometric Oxide Phases (pages 175–177): R. J. D. TilleyChapter 3.10.3.1.2 Reo3?Related Structures; Molybdenum and Tungsten Oxides (pages 177–178): R. J. D. TilleyChapter 3.10.3.1.3 Niobium Oxides and Related Structures (pages 178–182): R. J. D. TilleyChapter 3.10.3.2 Nonstoichiometric Layer Structure Oxides (page 182): M. Greenblatt and B. RaveauChapter 3.10.3.2.1 Layered Oxides Based on the Perovskite Structure (pages 183–184): M. Greenblatt and B. RaveauChapter 3.10.3.2.1.2 High Temperature Superconducting Cuprates (pages 184–191): M. Greenblatt and B. RaveauChapter 3.10.3.2.1.3 Intergrowth of Perovskite with “Bi2O2” Layers: Aurivillius Phases (page 191): M. Greenblatt and B. RaveauChapter 3.10.3.2.1.4 Brownmlllerite Family: (Amo3)NAmo2 (pages 192–193): M. Greenblatt and B. RaveauChapter 3.10.3.2.1.5 Titanates and Niobates, ANMNO3N+2 and Molybdates, Cs2MoNO3N+1 (pages 193–194): M. Greenblatt and B. RaveauChapter 3.10.3.2.2 Oxides Based on the Spinel Structure; Hexagonal Ferrites, ??Alumina Oxide Types, and LiXM2O4 (M = Ti, V, Mn)1?3 (pages 195–196): M. Greenblatt and B. RaveauChapter 3.10.3.2.2.2 The ??Alumina Family (pages 196–197): M. Greenblatt and B. RaveauChapter 3.10.3.2.2.3 LiXM2O4 (M=Ti,V, Mn) Phases (page 197): M. Greenblatt and B. RaveauChapter 3.10.3.2.3 Intergrowths of the Cage Oxide A3M3O21 with a Tunnel Structure, A2M6Si4)261 (pages 197–199): M. Greenblatt and B. RaveauChapter 3.10.3.2.4 Oxides with Intercalation Structures: Layers Built up of Edqe?Sharing Octahedra (pages 199–202): M. Greenblatt and B. RaveauChapter 3.10.3.2.4.2 HXMoo3: Hydrogen?Intercalated Compounds of Moo3 (pages 202–203): M. Greenblatt and B. RaveauChapter 3.10.3.2.4.3 Molybdenum Bronzes AXMoYOZ (pages 203–207): M. Greenblatt and B. RaveauChapter 3.10.3.2.4.4 AXMO2 Oxides (pages 207–210): M. Greenblatt and B. RaveauChapter 3.10.3.2.4.5 Another Family of AXMo2 Oxides (pages 210–211): M. Greenblatt and B. RaveauChapter 3.10.3.2.4.6 Titanates and Titanoniobates (or Tantalates) with a Layer Structure (pages 211–214): M. Greenblatt and B. RaveauChapter 3.10.3.3 Tunnel Structure Oxides1–8 (pages 214–215): M. Greenblatt and B. RaveauChapter 3.10.3.3.1 Tungsten, Molybdenum Bronzes, and Related Structures1–8 (pages 215–221): M. Greenblatt and B. RaveauChapter 3.10.3.3.2 Titanium Bronzes and Related Oxides (pages 222–225): M. Greenblatt and B. RaveauChapter 3.10.3.3.3 Hollandite, Psilomelane, Ramsdellite, and Related Oxides (pages 225–228): M. Greenblatt and B. RaveauChapter 3.10.3.3.4 Vanadium Bronzes with a Three?Dimensional Structure (page 228): M. Greenblatt and B. RaveauChapter 3.10.3.3.5 Complex Oxides with Host Lattice Built up from Octahedra and Tetrahedra (pages 228–229): M. Greenblatt and B. RaveauChapter 3.10.3.3.5.1 Phosphate Tungsten Bronzes (PTB) (pages 229–233): M. Greenblatt and B. RaveauChapter 3.10.3.3.5.2 Phosphate Niobium Bronzes (PNB) (pages 233–237): M. Greenblatt and B. RaveauChapter 3.10.3.3.5.3 Phosphate Molybdenum Oxides (pages 237–239): M. Greenblatt and B. RaveauChapter 3.10.3.3.5.4 Other Reduced Transition Metal Phosphates (page 239): M. Greenblatt and B. RaveauChapter 3.10.3.3.5.5 Siliconiobates, Silicotantalates, and Corresponding Germanium Compounds (pages 239–240): M. Greenblatt and B. RaveauChapter 3.10.3.4 Adaptive Structures (pages 240–241): R. S. RothChapter 3.10.3.4.1 Oxides with Vernier?Type Adaption Structures (pages 241–245): R. S. RothChapter 3.10.3.4.2 Double Oxides Based on Tantalum Pentoxide and Related Phases (pages 245–249): R. S. RothChapter 3.10.3.4.3 The Metal Uranates and Related Oxides (pages 249–250): L. E. ConroyChapter 3.10.3.5 Mixed Valence, Mixed Anion Phases, Including Oxides with Cations of Variable Valence (or Mixed Cations) Balanced by Substitution of Altervalent Anions (page 250): L. E. ConroyChapter 3.11.1 Introduction (pages 251–252): E. KaldisChapter 3.11.2 Chemical Bonding and Variation of Physical Properties by Means of Chemical Parameters (pages 252–253): E. KaldisChapter 3.11.2.2 4f?Transition Metal (Rare Earth) Chalcogenides (pages 253–255): E. KaldisChapter 3.11.3 Synthesis and Crystal Growth Under Controlled Thermodynamic Parameters (pages 255–256): E. KaldisChapter 3.11.3.1 Control of Nonstoichiometry (pages 256–259): E. KaldisChapter 3.11.3.2 Chemical Vapor Transport of the Chalcogenides (pages 259–260): E. KaldisChapter 3.11.4 By Reactions in Chalcogen?Hydrogen Systems (pages 260–261): P. K. Dorhout and H. SteinfinkChapter 3.11.4.2 Of Compounds of Metals (pages 261–262): P. K. Dorhout and H. SteinfinkChapter 3.11.5 By Precipitation Under Normal and Supercritical Conditions (page 262): P. K. Dorhout and H. SteinfinkChapter 3.11.5.1 From Aqueous Solution (pages 262–263): P. K. Dorhout and H. SteinfinkChapter 3.11.5.2 From Nonaqueous Solution (pages 263–264): P. K. Dorhout and H. SteinfinkChapter 3.11.6 By Insertion Reactions from Solutions (pages 264–269): A. LerfChapter 3.11.6.1 Layered Transition Metal Dichalcogenides (pages 269–273): A. LerfChapter 3.11.6.1.2 Unsolvated Metal Intercalation Compounds: Posttransition Metals (pages 274–276): A. LerfChapter 3.11.6.1.3 Unsolvated Metal Intercalation Compounds: Transition Metals (page 276): A. LerfChapter 3.11.6.1.4 “Misfit Layer Compounds” (pages 277–278): A. LerfChapter 3.11.6.1.5 Solvated Phases (pages 278–282): A. LerfChapter 3.11.6.1.6 Molecular Intercalation Compounds (pages 282–284): A. LerfChapter 3.11.6.1.7 Complex Intercalated Species (pages 284–286): A. LerfChapter 3.11.6.2 Other Layered Chalcogenides (pages 286–289): A. LerfChapter 3.11.6.3 Chain Stuctures (pages 290–292): A. LerfChapter 3.11.6 A Framework Structures (pages 292–293): A. LerfChapter 3.11.6.4.2 Structures with a Three?Dimensional Net of Channels (pages 293–295): A. LerfChapter 3.11.7 By Reactions in Melts (pages 295–296): P. K. Dorhout and H. SteinfinkChapter 3.11.7.1 In Molten Metals (page 296): P. K. Dorhout and H. SteinfinkChapter 3.11.7.2 In Molten Salts (pages 296–297): P. K. Dorhout and H. Steinfink