Associated Graded Algebra of a Gorenstein Artin Algebra (Repost)

Posted By: nebulae

Anthony A. Iarrobino, "Associated Graded Algebra of a Gorenstein Artin Algebra"
English | ISBN: 0821825526 | 1994 | 63 pages | PDF | 6 MB

Macdonald and Morris gave a series of constant term $q$-conjectures associated with root systems. Selberg evaluated a multivariable beta type integral which plays an important role in the theory of constant term identities associated with root systems. Aomoto recently gave a simple and elegant proof of a generalization of Selberg's integral. Kadell extended this proof to treat Askey's conjectured $q$-Selberg integral, which was proved independently by Habsieger. This monograph uses a constant term formulation of Aomoto's argument to treat the $q$-Macdonald-Morris conjecture for the root system $BC_n$. The $B_n$, $B_n^{\lor}$, and $D_n$ cases of the conjecture follow from the theorem for $BC_n$. Some of the details for $C_n$ and $C_n^{\lor}$ are given. This illustrates the basic steps required to apply methods given here to the conjecture when the reduced irreducible root system $R$ does not have miniscule weight.