Data Engineering Design Patterns: Recipes for Solving the Most Common Data Engineering Problems, 3rd Early Release

Posted By: IrGens

Data Engineering Design Patterns: Recipes for Solving the Most Common Data Engineering Problems, 3rd Early Release by Bartosz Konieczny
English | October 16, 2024 | ISBN: 9781098165765 | True EPUB | 340 pages | 3.5 MB

Data projects are an intrinsic part of an organization's technical ecosystem, but data engineers in many companies are still trying to solve problems that others have already solved. This hands-on guide shows you how to provide valuable data by focusing on various aspects of data engineering, including data ingestion, data quality, idempotency, and more.

Author Bartosz Konieczny guides you through the process of building reliable end-to-end data engineering projects, from data ingestion to data observability, focusing on data engineering design patterns that solve common business problems in a secure and storage-optimized manner. Each pattern includes a user-facing description of the problem, solutions, and consequences that place the pattern into the context of real-life scenarios.

Throughout this journey, you'll use open source data tools and public cloud services to see how to put each pattern into practice. You'll learn:

  • Challenges data engineers face and their impact on data systems
  • How these challenges relate to data system components
  • What data engineering patterns are for
  • How to identify and fix issues with your current data components
  • Technology-agnostic solutions to new and existing data projects
  • How to implement patterns with Apache Airflow, Apache Spark, Apache Flink, and Delta Lake