Master Pandas For Data Analysis And Visualisation
Published 7/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 29.01 GB | Duration: 44h 46m
Published 7/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 29.01 GB | Duration: 44h 46m
Data Analysis & Visualisation in Pandas, Pandas Plotting Lib, Numpy, Python, Streamlit, Problem Solving & 5 EDA Projects
What you'll learn
Basic, Intermediate & Object Oriented Programming in Python
Basic & Intermediate of Numpy
Basic to Advanced of Pandas Series
Basic to Advanced of Pandas DataFrame
Indexing, Slicing & Sorting a Pandas DataFrame
Joining, Merging, Concatenating, Updating & Combining a Pandas DataFrame
Filtering, Group by and Aggregation in Pandas DataFrame
String Operations in Pandas DataFrame
Multi-Indexing in Pandas DataFrame
Pivot & Reshaping a Pandas DataFrame
Working with Datetime & Timeseries in Pandas DataFrame
Resampling & Rolling
Styling a Pandas DataFrame
Options & Settings in Pandas DataFrame
Plotting & Visualisation of Pandas DataFrame
Data Cleaning & Preprocessing in Pandas DataFrame
Pandas Plotting Library
Streamlit Basics
Streamlit Dashboard
EDA projects on Kaggle Dataset
Requirements
No prior programming knowledge is required
You need a decent computer with a decent internet connection.
A very very important prerequisite: You are seriously willing to write codes with me.
A very very important prerequisite: You are seriously willing to learn data analysis and visualisation using Pandas only and do multiple EDA projects.
Description
Welcome to the course "Master Pandas for Data Analysis and Visualisation". The biggest and the best course on Pandas for Data Analysis and Visualisation. This is the only course based on Pandas Problem Solving & multiple EDA Projects.First you will learn Python from scratch to object oriented Python. Then you will learn Numpy from very basic to intermediate level. After that you will learn Pandas Series from very beginning to advance level and then you will learn Pandas DataFrame in Details.In Pandas DataFrame, you will learning everything from basic to advanced. You will learn how to create a Pandas DataFrame and run basic operations. You will learn indexing, slicing & sorting a Pandas DataFrame. You will learn joining, merging, concatenating, updating, combining, filtering, grouping by, aggregation, string operations, multiindexing, pivot & reshaping, datetime & series, resampling & rolling, styling, options & settings, plotting & visualisation and data cleaning & preprocessing.You will also learn Solving Pandas Problems, Feature Engineering & EDA.Finally, you will do multiple EDA projects using only Pandas & Pandas Plotting Library.And at the end, you will learn to develop a basic dashboard using Streamlit & PandasI’ve already added about 45hrs of contents. There will be more than 10 hours of contents soon. So, what are you waiting for? Enrol into the course and suggest your favourite EDA projects to add into the course.You will learn through developing projects and writing codes together. We will together develop about 5 projects. I've already added 5 projects and about 2 more projects I will add based on student's choice.I promise to give you something which no instructor has ever given in any course.
Overview
Section 1: Introduction
Lecture 1 Introduction
Section 2: Installation and Configuration
Lecture 2 Installing & configuring Anaconda
Lecture 3 Online Compiler & Google CoLab
Lecture 4 Installing PyCharm
Section 3: Python
Lecture 5 01. Welcome to my Universe
Lecture 6 02. Variables & Value assignments
Lecture 7 03. Python - Data types & Operators
Lecture 8 04. Python - Operators
Lecture 9 05. Python Statements - if, else
Lecture 10 06. Solution of Homework on Python Statements
Lecture 11 07. Python For Loop
Lecture 12 08. Python - While Loop
Lecture 13 09. Python List & Array - Part 1
Lecture 14 10. Python Function & Method
Lecture 15 11. Python List & Array part 2
Lecture 16 12. Python List & Array - Part 3
Lecture 17 13. Python Tuple, Set and Dictionary
Lecture 18 14. Python String
Lecture 19 15. Python Dates & Math Modules
Lecture 20 16. Custom type in Python
Lecture 21 17. Class, Object, Object properties, Constructor and methods
Lecture 22 18. Python Scope, Private fields and methods
Lecture 23 19. Python Inheritance
Lecture 24 20. Python Polymorphism & Abstraction
Lecture 25 21. Python Iterator
Lecture 26 22. Python Lambda
Lecture 27 23. Python Files
Lecture 28 24. Python Try Except
Section 4: Coding exercises and Problem solving on Python
Section 5: Numpy
Lecture 29 01. Creating Numpy arrays
Lecture 30 02. Numpy Array Attributes & Functions
Lecture 31 03. Indexing and slicing Numpy array
Lecture 32 04. Numpy Copy & View
Lecture 33 05. Reshape, Resize, Ravel & Flatten
Lecture 34 06. Arithmetic Operations & Aggregations
Section 6: Coding exercises and Problem solving on Numpy
Section 7: Pandas Series
Lecture 35 Pandas Series - Create a basic Pandas Series
Lecture 36 Pandas Series - Get, Show, Add and Update a Series
Lecture 37 Series - sample() info(), describe(), head(), tail(), first(), last(), take()
Lecture 38 Pandas Series - Data types in Pandas Series
Lecture 39 Pandas Series - Python functions in use
Lecture 40 Pandas Series - nlargest(), nsmallest(), keys() and items()
Lecture 41 Pandas Series - unique(), nunique(), duplicated() and item()
Lecture 42 Pandas Series - Important Attributes
Lecture 43 Pandas Series - Reading CSV files
Lecture 44 Pandas Series - Important Parameters
Lecture 45 Pandas Series - Get and Slice using [] and .get() method
Lecture 46 Pandas Series - Get and Slice using .loc[] and .iloc[]
Lecture 47 Pandas Series - .index, .reindex() and .reset_index()
Lecture 48 Pandas Series - Sorting using sort_values()
Lecture 49 Pandas Series - Sorting using sort_index()
Lecture 50 Pandas Series - add(), sub(), mul(), div()
Lecture 51 Pandas Series - abs(), round(), ceil(), floor()
Lecture 52 Series - max(), min(), argmax(), argmin() mean(), median(), sum(), std(), var()
Lecture 53 Pandas Series - Filtering using comparison operators and the filter() method
Lecture 54 Pandas Series - fillna(), drop(), dropna(), drop_duplicates()
Lecture 55 Pandas Series - isna(), isnull(), notna(), notnull()
Lecture 56 Pandas Series - The where(), mask(), between() and apply() method
Lecture 57 Pandas Series - The replace() method
Lecture 58 Pandas Series - The groupby() method
Lecture 59 Pandas Series - The agg() & aggregate() method
Section 8: Coding exercises and Problem solving on Python
Section 9: Pandas DataFrame
Lecture 60 Pandas DataFrame - Creating a basic Pandas DataFrame
Lecture 61 Pandas DataFrame - Get, Show, Add and Update Pandas DataFrame
Lecture 62 DataFrame - sample() info(), describe(), head(), tail(), first(), last(), take()
Lecture 63 Pandas DataFrame - nlargest(), nsmallest()
Lecture 64 Pandas DataFrame - unique(), nunique() & duplicated()
Lecture 65 Pandas DataFrame - Data types in Pandas DataFrame
Lecture 66 Pandas DataFrame - Python functions in use
Lecture 67 Pandas DataFrame - count() & value_counts()
Lecture 68 Reading CSV, Excel, JSON & TXT files
Lecture 69 Pandas DataFrame - Playing with Attributes
Lecture 70 Pandas DataFrame - Important Parameters
Lecture 71 Pandas DataFrame - add(), sub(), mul(), div(), mod()
Lecture 72 Pandas DataFrame - pow(), abs(), round(), ceil, floor, square, sqrt
Lecture 73 Pandas DataFrame - min(), max(), sum(), mean(), median(), std(), var()
Lecture 74 Pandas DataFrame - dot(), prod(), cumsum(), corr(), cov()
Section 10: Coding Exercises & Problem Solving
Section 11: Pandas DataFrame - indexing, slicing & sorting
Lecture 75 Pandas DataFrame - set_index() and reset_index(), .index, .index.names and more
Lecture 76 DataFrame - Get and Slice using [], .get(), .loc[] and .iloc[], .at[], .iat[]
Lecture 77 Pandas DataFrame - [] vs .get() vs .loc[] vs .iloc[] vs .at[] vs .iat[]
Lecture 78 Pandas DataFrame - sort_values()
Lecture 79 Pandas DataFrame - sort_index()
Section 12: Coding Exercises & Problem Solving
Section 13: Pandas DataFrame - Joining, Merging, Concatenating and Combining
Lecture 80 Pandas DataFrame - The join() & merge() method
Lecture 81 Pandas DataFrame - The update(), concat() & combine() method
Section 14: Pandas DataFrame - Filtering Pandas DataFrame
Lecture 82 Pandas DataFrame - Filtering using comparison and logical operators
Lecture 83 Pandas DataFrame - The filter() method
Lecture 84 DataFrame - isna(), notna(), fillna(), dropna(), drop(), drop_duplicates()
Lecture 85 Pandas DataFrame - The where(), mask(), between() and apply() method
Lecture 86 Pandas DataFrame - The query() method
Lecture 87 Pandas DataFrame - The replace() & map() method
Section 15: Coding Exercises & Problem Solving
Section 16: Pandas DataFrame - GroupBy & Aggregation
Lecture 88 Pandas Group by - Basics of Grouping by
Lecture 89 Pandas Group by - .groups, .ngroups, .indices and .get_group()
Lecture 90 Pandas Group by - Methods in use
Lecture 91 Pandas Group by - Basic aggregation operations
Lecture 92 Pandas Group by - Group by multiple columns
Lecture 93 Pandas Group by - Looping through the groupby object
Lecture 94 Pandas Group by - Multiple aggregations
Lecture 95 Pandas Group by - Using the .filter() method on groupby object
Lecture 96 Pandas Group by - Using the .pipe() method on groupby object
Lecture 97 Pandas Group by - Using the .transform() method on groupby object
Section 17: Pandas - String methods & working with text data
Lecture 98 Pandas - Python string methods
Lecture 99 Pandas - lower(), upper(), capitalize(), title() and swapcase() methods
Lecture 100 Pandas - find(), rfind(), findall(), index(), rindex() & count() methods
Lecture 101 Pandas - contains(), startswith(), endswith(), match() and fullmatch() methods
Lecture 102 Pandas - isalpha(), isdigit(), isalnum(), islower(), isupper() and more …
Lecture 103 Pandas - len(), strip(), rstrip(), lstrip() methods
Lecture 104 Pandas - str.pad(), str.center(), str.rjust() and str.ljust() methods
Lecture 105 Pandas - split(), rsplit(), partition(), and rpartition() methods
Lecture 106 Pandas - More on the .split() method
Lecture 107 Pandas - str.replace() method
Lecture 108 Pandas - str.cat() method
Lecture 109 Pandas - str.slice() and str.slice_replace() methods
Section 18: Coding Exercises & Problem Solving
Section 19: MultiIndexing in Pandas
Lecture 110 Pandas - Creating MultiIndex Series
Lecture 111 Pandas - Creating MultiIndex DataFrame
Lecture 112 Pandas - Working with MultiIndex both on Rows & Columns
Lecture 113 Pandas - Working with MultiIndex "levels" on Rows
Lecture 114 Pandas - Working with MultiIndex "levels" on Columns
Lecture 115 Pandas - MultiIndex and Cross Section - .xs()
Lecture 116 Pandas - Sorting MultiIndex DataFrame
Lecture 117 Pandas - Slicing MultiIndex DataFrame
Section 20: Pandas DataFrame - Pivot & Reshaping
Lecture 118 Pivot & Reshape Pandas DataFrame using the .pivot() method
Lecture 119 Pivot & Reshape Pandas DataFrame - the .pivot_table() method
Lecture 120 Pivot & Reshaping Pandas DataFrame - .stack() & .unstack() methods
Lecture 121 Pivot & Reshape Pandas DataFrame - the unstack() method
Lecture 122 Pivot & Reshape Pandas DataFrame - the melt() method
Lecture 123 Pivot & Reshape Pandas DataFrame - transpose() & wide_to_long() methods
Section 21: Working with Pandas DateTime & Timeseries
Lecture 124 Pandas Datetime - Working with Python datetime
Lecture 125 Pandas Datetime - Working with Timestamp() object
Lecture 126 Pandas Datetime - pd.to_datetime() method - Part 1
Lecture 127 Pandas Datetime - pd.to_datetime() method - Part 2
Lecture 128 Pandas Datetime - Working with pd.date_range() method Part 1
Lecture 129 Pandas Datetime - Working with pd.date_range() method Part 2
Lecture 130 Pandas Datetime - Working with pd.date_range() method Part 3
Lecture 131 Pandas Datetime - Working with pd.date_range() method Part 4
Lecture 132 Pandas Datetime - Working with pd.date_range() method Part 5
Lecture 133 Pandas Datetime - Working with pd.date_range() method Part 6
Lecture 134 Pandas Datetime - Working with the DatetimeIndex object
Section 22: Coding Exercises & Problem Solving
Section 23: Pandas Grouper, Grouping, Resampling & Rolling
Lecture 135 Pandas - Rolling and Aggregation
Lecture 136 Pandas Group by & Grouper object
Lecture 137 Pandas Groupby & Resample
Section 24: Pandas - The Styler Object & Styling DataFrame
Lecture 138 Pandas Styling - style.applymap(), style.map() & style.apply() methods
Lecture 139 Pandas Styling - Specifying axis & subsets
Lecture 140 Pandas Styling - style.format()
Lecture 141 Pandas Styling - Built in Styles
Lecture 142 Pandas Styling - set_properties() method
Lecture 143 Pandas Styling - bar() & set_caption() methods
Lecture 144 Pandas Styling - style.background_gradient()
Section 25: Pandas DataFrame - Options & Settings
Lecture 145 Pandas Options & Settings - max_rows, min_rows & max_columns
Lecture 146 Pandas Options & Settings - get, set, reset & describe option
Lecture 147 Pandas Options & Settings - max_info_columns, max_info_rows & max_colwidth
Lecture 148 Pandas Options & Settings - large_repr, colheader_justify, multi_sparse
Lecture 149 Pandas Options & Settings - float_format, precision & chop_threshold
Section 26: Pandas - Plotting & Visualisations
Lecture 150 Pandas Plotting & Visualisation - Using .plot() method
Lecture 151 Pandas Plotting & Visualisation - Using .plot.bar() method
Lecture 152 Pandas Visualisation - Using .plot.line, .plot.area() & .plot.scatter() methods
Lecture 153 Pandas Plotting and Visualization - KDE Plotting
Lecture 154 Pandas Plotting and Visualization - Histogram Plotting
Lecture 155 Pandas Plotting and Visualization - Hexbin Plotting
Lecture 156 Pandas Plotting and Visualization - Pie Plotting
Section 27: Pandas - Data Cleaning and Preprocessing
Lecture 157 Pandas - Data Cleaning - Part 1
Lecture 158 Pandas - Data Cleaning - Part 2
Lecture 159 Pandas - Data Cleaning - Part 3
Lecture 160 Pandas - Data Cleaning - Part 4
Lecture 161 Pandas - Data Cleaning - Part 5
Section 28: Solve 101 Pandas Problems
Lecture 162 Solving Pandas Problems - from 1 to 13
Lecture 163 Solving Pandas Problems - from 14 to 19
Lecture 164 Solving Pandas Problems - from 19 to 25
Lecture 165 Solving Pandas Problems - from 26 to 30
Lecture 166 Solving Pandas Problems - from 31 to 32
Lecture 167 Solving Pandas Problems - from 33 to 37
Lecture 168 Solving Pandas Problems - from 38 to 43
Lecture 169 Solving Pandas Problems - from 44 to 50
Section 29: Pandas EDA - Exploratory Data Analysis
Lecture 170 What is EDA & Why Do We Need It?
Lecture 171 Types of Data in Data Analysis
Lecture 172 Univariate, Bivariate & Multivariate Analysis in Practice
Lecture 173 Type of Graphs & Charts used on EDA
Section 30: Feature Engineering in Data Analysis, Data Science & Machine Learning
Lecture 174 Feature Engineering in Data Analysis, Data Science & Machine Learning
Section 31: Pandas Exploratory Data Analysis Projects on Kaggle Dataset
Lecture 175 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 1
Lecture 176 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 2
Lecture 177 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 3
Lecture 178 Pandas EDA Project 1 - IMDB Movie Data Analysis - Part 4
Lecture 179 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 1
Lecture 180 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 2
Lecture 181 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 3 I
Lecture 182 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 3 II
Lecture 183 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 4 I
Lecture 184 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 4 II
Lecture 185 Pandas EDA Project 2 - Titanic survival dataset analysis - Part 5
Lecture 186 Pandas EDA Project 3 - Sales Analysis - Part 1
Lecture 187 Pandas EDA Project 3 - Sales Analysis - Part 2
Lecture 188 Pandas EDA Project 3 - Sales Analysis - Part 3
Lecture 189 Pandas EDA Project 3 - Sales Analysis - Part 4
Section 32: Pandas integration with Streamlit
Lecture 190 Streamlit - The Introduction
Lecture 191 Streamlit - Display elements
Lecture 192 Streamlit - Input Elements
Lecture 193 Streamlit - Markdown in Action
Lecture 194 Streamlit - Multipage Navigations
Lecture 195 Pandas & Streamlit Dashboard - Part 1
Lecture 196 Pandas & Streamlit Dashboard - Part 2
Lecture 197 Pandas & Streamlit Dashboard - Part 3
Lecture 198 Pandas & Streamlit Dashboard - Part 4
For someone who wants to Learn Data Analysis & Visualisation in Pandas, Pandas Plotting Lib, Numpy, Python, Streamlit, Problem Solving & 5 EDA Projects