Veera Boddu, Paul Redner, "Energetic Materials: Thermophysical Properties, Predictions, and Experimental Measurements"
English | 2010 | ISBN: 1439835136 | PDF | pages: 272 | 6.5 mb
English | 2010 | ISBN: 1439835136 | PDF | pages: 272 | 6.5 mb
The development, processing, and lifecycle environmental impact analysis of energetic materials all pose various challenges and potential dangers. Because safety concerns severely limit study of these substances at most research facilities, engineers will especially appreciate a tool that strengthens understanding of the chemistry and physics involved and helps them better predict how these materials will behave when used in explosives, propellants, pyrotechnics, and other applications.
Integrate Cutting-Edge Research Sponsored by the U.S. Department of Defense
Energetic Materials: Thermophysical Properties, Predictions, and Experimental Measurements covers a variety of advanced empirical modeling and simulation tools used to explore development, performance, sensitivity, and lifecycle issues of energetic materials. Focusing on a critical component of energetic materials research― prediction of thermophysical properties―this book elucidates innovative and experimental techniques being used to:
- Apply molecular and meso-scale modeling methodologies to measure reactivity, performance, and properties of new energetic materials
- Gain insight into shear initiation at the particulate level
- Better understand the fate, transport, and overall environmental impact of energetic materials
- Evaluate the performance of new materials and assess their reaction mechanisms
Edited by two respected U.S. Army engineers, this book highlights cutting-edge research from leaders in the energetics community. Documenting the history, applications, and environmental behavior of energetic materials, this reference is a valuable resource for anyone working to optimize their massive potential―either now or in the future.