Graph Machine Learning:
Take graph data to the next level by applying machine learning techniques and algorithms
English | 2021 | ISBN: 1800204493 | 334 Pages | EPUB | 8 MB
Take graph data to the next level by applying machine learning techniques and algorithms
English | 2021 | ISBN: 1800204493 | 334 Pages | EPUB | 8 MB
You will start with a brief introduction to graph theory and graph machine learning, understanding their potential. As you proceed, you will become well versed with the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll then build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. Moving ahead, you will cover real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. Finally, you will learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, before progressing to explore the latest trends on graphs.