Tags
Language
Tags
March 2025
Su Mo Tu We Th Fr Sa
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

Practical Guide to Applied Conformal Prediction in Python

Posted By: GFX_MAN
Practical Guide to Applied Conformal Prediction in Python

Practical Guide to Applied Conformal Prediction in Python
English | 2023 | ISBN: 1805122762 | 312 pages | True EPUB | 6.87 MB

Take your machine learning skills to the next level by mastering the best framework for uncertainty quantification - Conformal Prediction

Key Features
Master Conformal Prediction, a fast-growing ML framework, with Python applications.
Explore cutting-edge methods to measure and manage uncertainty in industry applications.
The book will explain how Conformal Prediction differs from traditional machine learning.

Book Description
In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. "Practical Guide to Applied Conformal Prediction in Python" addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework set to revolutionize uncertainty management in various ML applications.

Embark on a comprehensive journey through Conformal Prediction, exploring its fundamentals and practical applications in binary classification, regression, time series forecasting, imbalanced data, computer vision, and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. Practical examples in Python using real-world datasets reinforce intuitive explanations, ensuring you acquire a robust understanding of this modern framework for uncertainty quantification.

This guide is a beacon for mastering Conformal Prediction in Python, providing a blend of theory and practical application. It serves as a comprehensive toolkit to enhance machine learning skills, catering to professionals from data scientists to ML engineers.

What you will learn
The fundamental concepts and principles of conformal prediction
Learn how conformal prediction differs from traditional ML methods
Apply real-world examples to your own industry applications
Explore advanced topics - imbalanced data and multi-class CP
Dive into the details of the conformal prediction framework
Boost your career as a data scientist, ML engineer, or researcher
Learn to apply conformal prediction to forecasting and NLP

Who this book is for
Ideal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.