Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    KoalaNames.com
    What’s in a name? More than you think.

    Your name isn’t just a label – it’s a vibe, a map, a story written in stars and numbers.
    At KoalaNames.com, we’ve cracked the code behind 17,000+ names to uncover the magic hiding in yours.

    ✨ Want to know what your name really says about you? You’ll get:

    🔮 Deep meaning and cultural roots
    ♈️ Zodiac-powered personality insights
    🔢 Your life path number (and what it means for your future)
    🌈 Daily affirmations based on your name’s unique energy

    Or flip the script – create a name from scratch using our wild Name Generator.
    Filter by star sign, numerology, origin, elements, and more. Go as woo-woo or chill as you like.

    💥 Ready to unlock your name’s power?

    👉 Tap in now at KoalaNames.com

    Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains (2nd Edition)

    Posted By: hill0
    Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains (2nd Edition)

    Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains
    English | 2024 | ISBN: 303164090X | 348 Pages | PDF EPUB (True) | 40 MB

    The goal of this book is to investigate the behavior of weak solutions to the elliptic interface problem in a neighborhood of boundary singularities: angular and conic points or edges. This problem is considered both for linear and quasi-linear equations, which are among the less studied varieties. As a second edition of Transmission Problems for Elliptic Second-Order Equations for Non-Smooth Domains (Birkhäuser, 2010), this volume includes two entirely new chapters: one about the oblique derivative problems for the perturbed p(x)-Laplacian equation in a bounded n-dimensional cone, and another about the existence of bounded weak solutions.