Tags
Language
Tags
May 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Machine Learning Made Easy: Beginner To Expert Journey

    Posted By: ELK1nG
    Machine Learning Made Easy: Beginner To Expert Journey

    Machine Learning Made Easy: Beginner To Expert Journey
    Published 5/2025
    MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
    Language: English | Size: 2.75 GB | Duration: 9h 39m

    Machine Learning, Python Basics, Data Analysis, Exploratory Data Analysis (EDA), Supervised Learning, Unsupervised Learn

    What you'll learn

    Understand core ML concepts and apply them using Python.

    Master key ML algorithms using Python and essential libraries.

    Master key ML libraries like NumPy, Pandas, Scikit-learn, and Matplotlib

    Learn to preprocess and analyze data for effective model building.

    Build practical ML models using real-world datasets.

    Requirements

    Foundational math skills – Understanding basic algebra

    Basic computer literacy – Ability to navigate files, install software

    A laptop – Required for coding, running ML models, and practicing hands-on exercises.

    Internet connection – Needed for accessing course materials, datasets, and online resources.

    Description

    This course is designed for individuals with foundational math and computer skills, as well as those at an intermediate and advanced level who want to build a strong understanding of machine learning. You don’t need a high-end laptop—just a willingness to learn! The course includes a crash course on Python basics, covering essential libraries like NumPy, Pandas, Matplotlib, and Scikit-Learn. By the end, you’ll master data analysis, exploratory data analysis, supervised and unsupervised learning, and applying machine learning algorithms to real-world problems. It covers key algorithms such as linear regression, polynomial regression, logistic regression, K-Nearest Neighbors (KNN), K-Means clustering, DBScan, Support Vector Machines (SVM), and anomaly detection.Additionally, this course will help you develop strong problem-solving skills and understand how to interpret data effectively. You will gain hands-on experience through practical examples and real-world case studies, ensuring you can confidently apply machine learning techniques in various domains. Whether you're working on business applications, finance, healthcare, or AI-driven innovations, this course will equip you with the necessary skills to succeed. With step-by-step guidance and interactive exercises, you will build a strong foundation, allowing you to transition into advanced concepts effortlessly. By the end of this training, you'll be able to create, optimize, and evaluate machine learning models with confidence

    Overview

    Section 1: Introduction

    Lecture 1 1_01_Introduction_to_ByteLumina

    Lecture 2 1_02_How_to_access_resource

    Section 2: 2_Crash_Course_on_Python_and_Google_Colab

    Lecture 3 2_01_Introduction_to_Python

    Lecture 4 2_02_Getting_Started_with_Google_Colab

    Lecture 5 2_03_Basic_operations_in_Google_Colab

    Lecture 6 2_04_Basics_of_Python_programming

    Lecture 7 2_05_Double_and_single_quote_in_Python

    Lecture 8 2_06_Basic_Data_types_and_variables

    Lecture 9 2_07_Use_variables_with_F_String

    Lecture 10 2_08_Comments_in_Python

    Lecture 11 2_09_Lists_and_List_indexing

    Lecture 12 2_10_Slicing_of_the_Lists

    Lecture 13 2_11_Practicing_List_operations

    Lecture 14 2_12_Basic_List_Operations_in_Python

    Lecture 15 2_13_Tuple_in_Python

    Lecture 16 2_14_Dictionary_in_Python

    Lecture 17 2_15_Set_in_Python

    Lecture 18 2_16_Immutable_and_Mutable_objects_in_Python

    Lecture 19 2_17_Arithmetic_Operators_in_Python

    Lecture 20 2_18_Comparison_operator_in_Python

    Lecture 21 2_19_Logical_operators_in_Python_(and,_or,_not)

    Lecture 22 2_20_Assignment_operators_in_Python

    Lecture 23 2_21_Characters_and_strings_in_Python

    Lecture 24 2_22_F-strings_in_Python

    Lecture 25 2_23_Rules_for_variables_naming

    Lecture 26 2_24_How_to_read_error_message

    Lecture 27 2_25_Conditional_statements_in_Python

    Lecture 28 2_26_Loops_in_Python

    Lecture 29 2_27_Functions_in_Python

    Lecture 30 2_28_Lambda,_map,_zip_functions_in_Python

    Lecture 31 2_29_Methods_in_Python

    Lecture 32 2_30_Python_Modules,_built-in_package

    Lecture 33 2_31_OS_module_and_file_path

    Lecture 34 2_32_File_handling_in_Python

    Lecture 35 2_33_Json_format_and_Json_files_management_in_Python

    Lecture 36 2_34_CSV_Format_and_CSV_file__handling_in_Python

    Lecture 37 2_35_Special_characters_in_Python

    Lecture 38 2_36_Exception_management_in_Python

    Lecture 39 2_37_Objects_in_Python

    Lecture 40 2_38_Python_classes_a_simple_introduction

    Lecture 41 2_39_Benefits_of_Using_self_in_Python_Classes

    Lecture 42 2_40_Constructors_in_Classes

    Lecture 43 2_41_Object-Oriented_Programming

    Lecture 44 2_42_PIP_in_Python

    Lecture 45 2_43_Using_CoPilot_as_companion_to_write_and_troubleshoot_code

    Lecture 46 2_44_End_of_section_Introduction_to_Python_and_Google_Colab

    Section 3: 3_Numpy_in_Python

    Lecture 47 3_01_Introduction_to_NumPy

    Lecture 48 3_02_Import_Numpy_as_np

    Lecture 49 3_03_Basic_Array_Creation_in_numpy

    Lecture 50 3_04_Array_dimensions,_Shape_and_Size_in_Numpy

    Lecture 51 3_05_Data_Types_in_Numpy

    Lecture 52 3_06_Pseudo_Data_Generation_in_numpy

    Lecture 53 3_07_Explanation_of_examples_created_in_previous_video1

    Lecture 54 3_08_Explanation_of_examples_created_in_previous_video2

    Lecture 55 3_09_Array_Indexing_and_Slicing

    Lecture 56 3_10_Array_Shape_and_Reshape

    Lecture 57 3_11_Special_dimension_in_Numpy

    Lecture 58 3_12_Handling_Missing_Data_in_Numpy

    Lecture 59 3_13_Numpy_performance_comparison

    Lecture 60 3_14_Universal_Functions_in_Numpy

    Lecture 61 3_15_Where_in_Numpy

    Lecture 62 NumPy Cheat Sheet

    Lecture 63 Rule of thumb for indexing

    Lecture 64 Universal Functions in NumPy

    Section 4: 4_Pandas_in_Python

    Lecture 65 4_01_Introduction_to_Pandas

    Lecture 66 4_02_Accessing_Data,_indexing_and_slicing_in_a_Series

    Lecture 67 4_03_Accessing_data_by_Col_label_or_position_in_DataFrame.txt

    Lecture 68 4_04_Selecting_data_by_label_in_DataFrame

    Lecture 69 4_05_Setting_and_resetting_indexes

    Lecture 70 4_06_Boolean_indexing

    Lecture 71 4_07_Data_Types_in_Pandas

    Lecture 72 4_08_Arithmetic_Operations

    Lecture 73 4_09_Reindexing_and_Reshaping

    Lecture 74 4_10_Statistics_in_Pandas

    Lecture 75 4_11_CSV_and_JSON_file_saving_and_loading

    Lecture 76 4_12_Working_with_Dates_and_Times

    Lecture 77 4_13_Dates_and_Times_Arithmetic_operations

    Lecture 78 4_14_Date_and_Time_Indexing

    Lecture 79 4_15_Merging_a_DataFrames

    Lecture 80 4_16_Joining_DataFrames

    Lecture 81 4_17_Concatenation,_stacking_and_unstacking_a_dataframe

    Lecture 82 4_18_Grouping_in_Pandas

    Lecture 83 4_19_MultiIndexing

    Lecture 84 4_20_Pivot_Tables

    Lecture 85 4_21_Groupby_vs_Multiindex_vs_Pivot_Table

    Lecture 86 4_22_Mastering_Pandas_str_A_powerful_tool_for_string_operations

    Lecture 87 4_23_Regex_in_Pandas

    Lecture 88 4_24_Data_Categorization_with_pandas_cut

    Lecture 89 4_25_Alternatives_to_Pandas_Vectorized_Operations

    Lecture 90 4_26_Panda_iteration

    Lecture 91 4_27_Window_Functions_in_Pandas

    Lecture 92 4_28_Missing_Data_Handling

    Lecture 93 4_29_Where_and_Mask_in_pandas

    Lecture 94 4_30_Concluding_the_section

    Lecture 95 Pandas Cheat Sheet

    Lecture 96 Arithmetic Methods in Pandas

    Lecture 97 Comparison Operators

    Lecture 98 dt accessor in pandas

    Lecture 99 Str accessor in Pandas

    Lecture 100 regular expressions

    Section 5: 5_Managing_Google_Drive

    Lecture 101 5_01_Issues_with_Colab

    Lecture 102 5_02_Mounting_google_drive

    Lecture 103 5_03_Managing_sessions_in_Google_Colab

    Section 6: 6_Matplotlib_and_Seaborn_in_Python

    Lecture 104 6_01_Plotting_and_Visualization_in_Python

    Lecture 105 6_02_Line_Plot

    Lecture 106 6_03_Bar,_Scatter,_area_and_pie_plots

    Lecture 107 6_04_Histogram,_box,_Kernel_density_Estimate_plot

    Lecture 108 6_05_Figure,_subplot_and_subplots

    Lecture 109 6_06_Colors,_Markers,_and_Line_Styles_in_Matplotlib

    Lecture 110 6_07_Tick,_labels_and_legends

    Lecture 111 6_08_Annotation_and_drawings_on_Subplot

    Lecture 112 6_09_Saving_plots_to_file

    Lecture 113 6_10_Introduction_to_Seaborn

    Lecture 114 Matplotlib cheat sheet

    Lecture 115 Seaborn Cheat Sheet

    Section 7: 7_Exploratory_Data_Analysis_(EDA)

    Lecture 116 7_01_EDA_and_Kaggle

    Lecture 117 7_02_Getting_First_Dataset

    Lecture 118 7_03_Loading_data_in_Colab_and_Sales_Price_Analysis

    Lecture 119 7_04_Normal_distribution,_Data_Skewness_and_kurtosis

    Lecture 120 7_05_Data_outliers

    Lecture 121 7_06_Features_of_a_dataset

    Lecture 122 7_07_Helper_function_explained1

    Lecture 123 7_08_Helper_function_explained2

    Lecture 124 7_09_Preparation_to_analyze_Features

    Lecture 125 7_10_Features_analysis_1

    Lecture 126 7_11_Features_analysis_Null_value_management

    Lecture 127 7_12_Features_correlation

    Lecture 128 7_13_Numeric_features_Missing_value_handling

    Lecture 129 7_14_The_Limitations_of_EDA_When_Intuition_and_Data_Disagree

    Lecture 130 7_15_Analyzing_Datetime_features

    Lecture 131 7_16_Ordinal_features_analysis

    Lecture 132 7_17_Anova_(Analysis_of_Variance)_for_Nominal_Features

    Lecture 133 7_18_Nominal_Features_analysis

    Lecture 134 7_19_Data_Analysis_Final_words

    Section 8: 8_Introduction_to_Machine_Learning

    Lecture 135 8_01_What_is_Machine_learning

    Lecture 136 8_2_Types_of_Machine_Learning_Supervised_Unsupervised_and_Reinforcement_Learning

    Lecture 137 8_03_Applications_of_Machine_learning

    Lecture 138 8_04_Linear_Regression_Introduction

    Lecture 139 8_05_Understanding_Scalars,_Vectors,_Matrices,_and_Tensors

    Lecture 140 8_06_Linear_regression_in_Machine_Learning

    Lecture 141 8_07_Introduction_to_cost_function_Mean_Squared_Error_(MSE)

    Lecture 142 8_08_Key_Parameters_or_coefficient_Slope_w_and_y-intercept_b

    Lecture 143 8_09_Introduction_to_Gradient_descent_algorithm

    Lecture 144 8_10_What_is_Gradient_Descent

    Lecture 145 8_11_Learning_rate

    Lecture 146 8_12_Feature_Scaling

    Lecture 147 8_13_Data_set_split_between_train,_test_and_validation_data

    Lecture 148 8_14_Multi_variable_regression

    Lecture 149 8_15_Dot_product

    Lecture 150 8_16_Explanation_of_dot_product_functions

    Lecture 151 8_17_House_price_prediction_with_full_application

    Lecture 152 8_18_Exploring_Feature_Scaling_Methods

    Lecture 153 8_19_Polynomial_regression_and_Feature_Engineering

    Lecture 154 8_20_Vectorization_of_Equations

    Lecture 155 8_21_Saving_numeric_features

    Section 9: 9_Intro_to_sklearn_Scikit-Learn

    Lecture 156 9_01_Introduction_to_Scikit-learn

    Lecture 157 9_02_Dataset_split_in_train_and_test

    Lecture 158 9_03_Data_scaling_with_sklearn

    Lecture 159 9_04_Arrays_comparison

    Lecture 160 9_05_Regression_analysis_for_single_variable

    Lecture 161 9_06_Shape_of_the_vector

    Lecture 162 9_07_Multivariable_linear_regression

    Lecture 163 9_08_Result_analysis

    Section 10: 10_Logistic_regression_and_classification

    Lecture 164 10_01_Introduction_to_classification

    Lecture 165 10_02_Logistic_regression

    Lecture 166 10_03_Decision_boundary

    Lecture 167 10_04_Loss_function_for_logistic_regression

    Lecture 168 10_05_Cost_function_and_Gradient_Descent_for_logistic_regression

    Lecture 169 10_06_Titanic_Survival_Insights_Data_download

    Lecture 170 10_07_One_Hot_Encoding

    Lecture 171 10_08_Data_preparation_for_model

    Lecture 172 10_09_Model1_for_binary_classification

    Lecture 173 10_10_Accuracy_and_Cost_for_classification

    Lecture 174 10_11_Simplifying_Logistic_Regression_with_Scikit-Learn

    Section 11: 11_Model_performance_validation

    Lecture 175 11_01_Train,_Test_and_Validation_split

    Lecture 176 11_02_K-fold_cross_validation

    Section 12: 12_Confusion_Matrix

    Lecture 177 12_01_Unbalanced_data_problem

    Lecture 178 12_02_Confusion_matrix

    Lecture 179 12_03_Precision,_Recall_and_F1-Score

    Lecture 180 12_04_Classification_report

    Section 13: 13_K-Nearest_Neighbors_(KNN)

    Lecture 181 13_01_Introduction_to_K-Nearest_Neighbors

    Lecture 182 13_02_Euclidean_Distance_formula

    Lecture 183 13_03_KNN_algorithm

    Section 14: 14_Model_Overfitting_and_Underfitting_problem

    Lecture 184 14_01_Overfitting_and_underfitting

    Lecture 185 14_02_Addressing_over_or_under_fitting

    Lecture 186 14_03_Reguralization

    Section 15: 15_SVM_Support_Vector_Machine

    Lecture 187 15_01_Introduction_to_Support_vector_machine

    Lecture 188 15_02_Key_terms_for_SVM

    Lecture 189 15_03_Support_vector_classification_(SVC)

    Lecture 190 15_04_Randomized_Search

    Lecture 191 15_05_Grid_search

    Lecture 192 15_06_Support_vector_regression_(SVR)

    Section 16: 16_Decision_Tree_Random_Forest_and_XGBoost

    Lecture 193 16_01_Introduction_to_decision_trees

    Lecture 194 16_02_Entropy

    Lecture 195 16_03_Information_gain

    Lecture 196 16_04_Gini_Index

    Lecture 197 16_05_Decision_tree_classifier

    Lecture 198 16_06_Decision_Tree_Regression

    Lecture 199 16_07_Ensemble_multiple_decision_trees

    Lecture 200 16_08_Bootstrapping_sampling_with_replacement

    Lecture 201 16_09_Random_forest

    Lecture 202 16_10_XGBoost

    Lecture 203 16_11_Coefficient_of_determination

    Lecture 204 16_12_Models_performance_comparison

    Section 17: 17_K_mean_clustering_Unsupervised_Learning

    Lecture 205 17_01_Introduction_to_clustering

    Lecture 206 17_02_K-Mean_Clustering_algorithm

    Lecture 207 17_03_K-Mean_Clustering_algorithm_formula

    Lecture 208 17_04_Data_Preparation_for_clustering

    Lecture 209 17_05_K_mean_clustering_with_sklearn

    Section 18: 18_DBScan

    Lecture 210 18_01_Introduction_to_DBScan

    Lecture 211 18_02_Application_of_DBScan

    Section 19: 19_Anomaly_detection_Finding_unusual_events

    Lecture 212 19_01_Introduction_to_anomaly_detection

    Lecture 213 19_02_Gaussian_normal_distribution_for_anomaly_detection

    Lecture 214 19_03_The_dataset_for_anomaly_detection

    Lecture 215 19_04_Anomaly_detection_algorithm

    Section 20: 20_Final_words

    Lecture 216 20_01_Next_steps

    Anyone eager to learn machine learning with foundational math and IT skills.,Business executives seeking insights into AI and data-driven decision-making,Beginner developers looking to build a strong foundation in machine learning.,Machine learning enthusiasts eager to explore practical applications.,Technical professionals wanting to enhance their analytical skills.,Project managers aiming to understand ML-driven solutions.,Product managers interested in leveraging ML for business strategy.,Students preparing for careers in data science, AI, or related fields.