Coursera - Control of Mobile Robots (Georgia Institute of Technology)
WEBRip | English | MP4 | 960 x 540 | AVC ~62 kbps | 29.970 fps
AAC | 128 Kbps | 44.1 KHz | 2 channels | Subs: English (.srt) | 13:39:29 | 1.31 GB
Genre: eLearning Video / Programming, Robotics, Computer Engineering
WEBRip | English | MP4 | 960 x 540 | AVC ~62 kbps | 29.970 fps
AAC | 128 Kbps | 44.1 KHz | 2 channels | Subs: English (.srt) | 13:39:29 | 1.31 GB
Genre: eLearning Video / Programming, Robotics, Computer Engineering
Control of Mobile Robots is a course that focuses on the application of modern control theory to the problem of making robots move around in safe and effective ways. The structure of this class is somewhat unusual since it involves many moving parts - to do robotics right, one has to go from basic theory all the way to an actual robot moving around in the real world, which is the challenge we have set out to address through the different pieces in the course.The class will consist of lecture videos, which are between 8 and 12 minutes in length. These contain 1-2 integrated quiz questions per video. There will also be standalone homework and a final exam.
Magnus Egerstedt is a Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology, where he has been on the faculty since 2001. He is an award-winning teacher, with awards from both Georgia Tech and Harvard University. Dr. Egerstedt received the M.S. degree in Engineering Physics and the Ph.D. degree in Applied Mathematics from the Royal Institute of Technology, Stockholm, Sweden, and the B.A. degree in Philosophy from Stockholm University. Dr. Egerstedt's research interests include motion planning, control, and coordination of (teams of) mobile robots, and he is the director of the Georgia Robotics and Intelligent Systems Laboratory (GRITS Lab). Magnus Egerstedt is a Fellow of the IEEE and a recipient of the CAREER Award from the U.S. National Science Foundation.
This course investigates how to make mobile robots move in effective, safe, and predictable ways. The basic tool for achieving this is "control theory", which deals with the question of how dynamical systems, i.e., systems whose behaviors change over time, can be effectively influenced. In the course, these two domains - controls and robotics - will be interleaved and we will go from the basics of control theory, via robotic examples of increasing complexity - all the way to the research frontier. The course will focus on mobile robots as the target application and problems that will be covered include (1) how to make (teams of) wheeled ground robots avoid collisions while reaching target locations, (2) how to make aerial, quadrotor robots follow paths in the presence of severe disturbances, and (3) how to locomotive bipedal, humanoid robots.
While the main focus of this course is theory, it is important to be able to map the theory onto an actual physical platform. As such, the course will provide detailed instructions on how to build a mobile robot from scratch as an optional part of the course. In addition, an introduction into microcontrollers, mechatronics, and electronics will be given so that, by the end of the course, the controllers developed in the course can run on an actual mobile robot.
The course will also feature optional programming assignments, which will focus on implementing the controllers developed in this course for a mobile robot. A MATLAB-based simulator will be available run controllers from the programming assignments on a simulated robot or on the mobilerobot built in this course. As a result of support from MathWorks, a downloadable license for MATLAB and course recommended toolboxes will be available for the duration of the MOOC.
ββββ01 - Week 1
β ββββ01 - Lecture Video 1.1 Control of Mobile Robots
β ββββ02 - Lecture Video 1.2 Whats Control Theory, Anyway
β ββββ03 - Lecture Video 1.3 On the Need for Models
β ββββ04 - Lecture Video 1.4 Cruise-Controllers
β ββββ05 - Lecture Video 1.5 Control Design Basics
β ββββ06 - Lecture Video 1.6 Performance Objectives
β ββββ07 - Lecture Video 1.7 PID Control
β ββββ08 - Lecture Video 1.8 Implementation
β ββββ09 - Glue Lecture 1
β ββββ10 - Programming Simulation Lecture 1
β ββββ11 - Hardware Lecture 1
ββββ02 - Week 2
β ββββ01 - Lecture Video 2.1 Driving Robots Around
β ββββ02 - Lecture Video 2.2 Differential Drive Robots
β ββββ03 - Lecture Video 2.3 Odometry
β ββββ04 - Lecture Video 2.4 Sensors
β ββββ05 - Lecture Video 2.5 Behavior-Based Robotics
β ββββ06 - Lecture Video 2.6 Go-to-Goal
β ββββ07 - Lecture Video 2.7 The GRITS Simulator
β ββββ08 - Lecture Video 2.8 Obstacle Avoidance
β ββββ09 - Glue Lecture 2
β ββββ10 - Programming Simulation Lecture 2
β ββββ11 - Hardware Lecture 2
ββββ03 - Week 3
β ββββ01 - Lecture Video 3.1 A Simple Robot
β ββββ02 - Lecture Video 3.2 State-Space Models
β ββββ03 - Lecture Video 3.3 Linearizations
β ββββ04 - Lecture Video 3.4 LTI Systems
β ββββ05 - Lecture Video 3.5 Stability
β ββββ06 - Lecture Video 3.6 Swarm Robotics
β ββββ07 - Lecture Video 3.7 Output Feedback
β ββββ08 - Lecture Video 3.8 State Feedback
β ββββ09 - Glue Lecture 3
β ββββ10 - Programming Simulation Lecture 3
β ββββ11 - Hardware Lecture 3 - Warning Mistakes in Wiring Diagram (Correct in Slides)
ββββ04 - Week 4
β ββββ01 - Lecture Video 4.1 Stabilizing the Point Mass
β ββββ02 - Lecture Video 4.2 Pole-Placement
β ββββ03 - Lecture Video 4.3 Controllability
β ββββ04 - Lecture Video 4.4 Segway Robots
β ββββ05 - Lecture Video 4.5 Observers
β ββββ06 - Lecture Video 4.6 Observability
β ββββ07 - Lecture Video 4.7 The Separation Principle
β ββββ08 - Lecture Video 4.8 Practical Considerations
β ββββ09 - Glue Lecture 4
β ββββ10 - Programming Simulation Lecture 4
β ββββ11 - Hardware Lecture 4
ββββ05 - Week 5
β ββββ01 - Lecture Video 5.1 Switches Everywhere
β ββββ02 - Lecture Video 5.2 Hybrid Automata
β ββββ03 - Lecture Video 5.3 A Counter-Example
β ββββ04 - Lecture Video 5.4 Danger - Beware
β ββββ05 - Lecture Video 5.5 The Bouncing Ball
β ββββ06 - Lecture Video 5.6 The Zeno Phenomenon
β ββββ07 - Lecture Video 5.7 Sliding Mode Control
β ββββ08 - Lecture Video 5.8 Regularizations
β ββββ09 - Glue Lecture 5
β ββββ10 - Programming Simulation Lecture 5
β ββββ11 - Hardware Lecture 5
ββββ06 - Week 6
β ββββ01 - Lecture Video 6.1 Behaviors Revisited
β ββββ02 - Lecture Video 6.2 Hard Switches vs Blending
β ββββ03 - Lecture Video 6.3 Convex and Non-Convex Worlds
β ββββ04 - Lecture Video 6.4 Boundary Following
β ββββ05 - Lecture Video 6.5 The Induced Mode
β ββββ06 - Lecture Video 6.6 A Complete Navigation System
β ββββ07 - Lecture Video 6.7 Practical Considerations
β ββββ08 - Lecture Video 6.8 Lets Do it
β ββββ09 - Glue Lecture 6
β ββββ10 - Programming Simulation Lecture 6
β ββββ11 - Hardware Lecture 6
ββββ07 - Week 7
ββββ01 - Lecture Video 7.1 Approximations and Abstractions
ββββ02 - Lecture Video 7.2 A Layered Architecture
ββββ03 - Lecture Video 7.3 Differential-Drive Trackers
ββββ04 - Lecture Video 7.4 A Clever Trick
ββββ05 - Lecture Video 7.5 Other Robot Classes
ββββ06 - Lecture Video 7.6 Car-Like Robots
ββββ07 - Lecture Video 7.7 To Probe Further
ββββ08 - Lecture Video 7.8 In Conclusion
ββββ09 - Glue Lecture 7
ββββ10 - Programming Simulation Lecture 7
ββββ11 - Hardware Lecture 7
β ββββ01 - Lecture Video 1.1 Control of Mobile Robots
β ββββ02 - Lecture Video 1.2 Whats Control Theory, Anyway
β ββββ03 - Lecture Video 1.3 On the Need for Models
β ββββ04 - Lecture Video 1.4 Cruise-Controllers
β ββββ05 - Lecture Video 1.5 Control Design Basics
β ββββ06 - Lecture Video 1.6 Performance Objectives
β ββββ07 - Lecture Video 1.7 PID Control
β ββββ08 - Lecture Video 1.8 Implementation
β ββββ09 - Glue Lecture 1
β ββββ10 - Programming Simulation Lecture 1
β ββββ11 - Hardware Lecture 1
ββββ02 - Week 2
β ββββ01 - Lecture Video 2.1 Driving Robots Around
β ββββ02 - Lecture Video 2.2 Differential Drive Robots
β ββββ03 - Lecture Video 2.3 Odometry
β ββββ04 - Lecture Video 2.4 Sensors
β ββββ05 - Lecture Video 2.5 Behavior-Based Robotics
β ββββ06 - Lecture Video 2.6 Go-to-Goal
β ββββ07 - Lecture Video 2.7 The GRITS Simulator
β ββββ08 - Lecture Video 2.8 Obstacle Avoidance
β ββββ09 - Glue Lecture 2
β ββββ10 - Programming Simulation Lecture 2
β ββββ11 - Hardware Lecture 2
ββββ03 - Week 3
β ββββ01 - Lecture Video 3.1 A Simple Robot
β ββββ02 - Lecture Video 3.2 State-Space Models
β ββββ03 - Lecture Video 3.3 Linearizations
β ββββ04 - Lecture Video 3.4 LTI Systems
β ββββ05 - Lecture Video 3.5 Stability
β ββββ06 - Lecture Video 3.6 Swarm Robotics
β ββββ07 - Lecture Video 3.7 Output Feedback
β ββββ08 - Lecture Video 3.8 State Feedback
β ββββ09 - Glue Lecture 3
β ββββ10 - Programming Simulation Lecture 3
β ββββ11 - Hardware Lecture 3 - Warning Mistakes in Wiring Diagram (Correct in Slides)
ββββ04 - Week 4
β ββββ01 - Lecture Video 4.1 Stabilizing the Point Mass
β ββββ02 - Lecture Video 4.2 Pole-Placement
β ββββ03 - Lecture Video 4.3 Controllability
β ββββ04 - Lecture Video 4.4 Segway Robots
β ββββ05 - Lecture Video 4.5 Observers
β ββββ06 - Lecture Video 4.6 Observability
β ββββ07 - Lecture Video 4.7 The Separation Principle
β ββββ08 - Lecture Video 4.8 Practical Considerations
β ββββ09 - Glue Lecture 4
β ββββ10 - Programming Simulation Lecture 4
β ββββ11 - Hardware Lecture 4
ββββ05 - Week 5
β ββββ01 - Lecture Video 5.1 Switches Everywhere
β ββββ02 - Lecture Video 5.2 Hybrid Automata
β ββββ03 - Lecture Video 5.3 A Counter-Example
β ββββ04 - Lecture Video 5.4 Danger - Beware
β ββββ05 - Lecture Video 5.5 The Bouncing Ball
β ββββ06 - Lecture Video 5.6 The Zeno Phenomenon
β ββββ07 - Lecture Video 5.7 Sliding Mode Control
β ββββ08 - Lecture Video 5.8 Regularizations
β ββββ09 - Glue Lecture 5
β ββββ10 - Programming Simulation Lecture 5
β ββββ11 - Hardware Lecture 5
ββββ06 - Week 6
β ββββ01 - Lecture Video 6.1 Behaviors Revisited
β ββββ02 - Lecture Video 6.2 Hard Switches vs Blending
β ββββ03 - Lecture Video 6.3 Convex and Non-Convex Worlds
β ββββ04 - Lecture Video 6.4 Boundary Following
β ββββ05 - Lecture Video 6.5 The Induced Mode
β ββββ06 - Lecture Video 6.6 A Complete Navigation System
β ββββ07 - Lecture Video 6.7 Practical Considerations
β ββββ08 - Lecture Video 6.8 Lets Do it
β ββββ09 - Glue Lecture 6
β ββββ10 - Programming Simulation Lecture 6
β ββββ11 - Hardware Lecture 6
ββββ07 - Week 7
ββββ01 - Lecture Video 7.1 Approximations and Abstractions
ββββ02 - Lecture Video 7.2 A Layered Architecture
ββββ03 - Lecture Video 7.3 Differential-Drive Trackers
ββββ04 - Lecture Video 7.4 A Clever Trick
ββββ05 - Lecture Video 7.5 Other Robot Classes
ββββ06 - Lecture Video 7.6 Car-Like Robots
ββββ07 - Lecture Video 7.7 To Probe Further
ββββ08 - Lecture Video 7.8 In Conclusion
ββββ09 - Glue Lecture 7
ββββ10 - Programming Simulation Lecture 7
ββββ11 - Hardware Lecture 7
also You can watch my other helpful: Coursera-posts
General
Complete name : 4 - 3 - Lecture Video 4.3 Controllability.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 14.4 MiB
Duration : 10 min 9 s
Overall bit rate : 198 kb/s
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Writing application : Lavf53.29.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : High@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, RefFrames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 10 min 9 s
Bit rate : 62.0 kb/s
Width : 960 pixels
Height : 540 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 29.970 (30000/1001) FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.004
Stream size : 4.50 MiB (31%)
Writing library : x264 core 120 r2120 0c7dab9
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Audio
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format profile : LC
Codec ID : mp4a-40-2
Duration : 10 min 9 s
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel positions : Front: L R
Sampling rate : 44.1 kHz
Frame rate : 43.066 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 9.29 MiB (65%)
Default : Yes
Alternate group : 1
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Complete name : 4 - 3 - Lecture Video 4.3 Controllability.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 14.4 MiB
Duration : 10 min 9 s
Overall bit rate : 198 kb/s
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Writing application : Lavf53.29.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : High@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, RefFrames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 10 min 9 s
Bit rate : 62.0 kb/s
Width : 960 pixels
Height : 540 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 29.970 (30000/1001) FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.004
Stream size : 4.50 MiB (31%)
Writing library : x264 core 120 r2120 0c7dab9
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Audio
ID : 2
Format : AAC
Format/Info : Advanced Audio Codec
Format profile : LC
Codec ID : mp4a-40-2
Duration : 10 min 9 s
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel positions : Front: L R
Sampling rate : 44.1 kHz
Frame rate : 43.066 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 9.29 MiB (65%)
Default : Yes
Alternate group : 1
Encoded date : UTC 1970-01-01 00:00:00
Tagged date : UTC 1970-01-01 00:00:00
Screenshots
β
Exclusive eLearning Videos ParRus-blog β add to bookmarks
Feel free to contact me PM
when links are dead or want any repost
Feel free to contact me PM
when links are dead or want any repost