Tags
Language
Tags
August 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    From Micro to Macro Quantum Systems: A Unified Formalism With Superselection Rules And Its Applications

    Posted By: innofidelity

    From Micro to Macro Quantum Systems: A Unified Formalism With Superselection Rules And Its Applications
    By K. Kong Wan | publisher: Imperial College Press | Number Of Pages: 708 | 25.91Mb | PDF | Publication Date:2006-03-03 | ISBN:1860946259

    Traditional quantum theory has a very rigid structure, making it difficult to accommodate new properties emerging from novel systems. This book presents a flexible and unified theory for physical systems, from micro and macro quantum to classical. This is achieved by incorporating superselection rules and maximal symmetric operators into the theory. The resulting theory is applicable to classical, microscopic quantum and non-orthodox mixed quantum systems of which macroscopic quantum systems are examples. A unified formalism also greatly facilitates the discussion of interactions between these systems. A scheme of quantization by parts is introduced, based on the mathematics of selfadjoint and maximal symmetric extensions of symmetric operators, to describe point interactions. The results are applied to treat superconducting quantum circuits in various configurations. This book also discusses various topics of interest such as the asymptotic treatment of quantum state preparation and quantum measurement, local observables and local values, Schrödinger's cat states in superconducting systems, and a path space formulation of quantum mechanics. This self-contained book is complete with a review of relevant geometric and operator theories, for example, vector fields and operators, symmetric operators and their maximal symmetric extensions, direct integrals of Hilbert spaces and operators.