Tags
Language
Tags
April 2025
Su Mo Tu We Th Fr Sa
30 31 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 1 2 3
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

Big Data Imperatives: Enterprise Big Data Warehouse, BI Implementations and Analytics

Posted By: AvaxGenius
Big Data Imperatives: Enterprise Big Data Warehouse, BI Implementations and Analytics

Big Data Imperatives: Enterprise Big Data Warehouse, BI Implementations and Analytics by Soumendra Mohanty
English | PDF | 2013 | 311 Pages | ISBN : 1430248726 | 9.3 MB

Big Data Imperatives, focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications?
Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use.

This book addresses the following big data characteristics:

Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible
Petabytes/Exabytes of data
Millions/billions of people providing/contributing to the context behind the data
Flat schema's with few complex interrelationships
Involves time-stamped events
Made up of incomplete data
Includes connections between data elements that must be probabilistically inferred
Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability.
Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible.

This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.
Without You And Your Support We Can’t Continue
Thanks For Buying Premium From My Links For Support