Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Deep Learning Interviews: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

    Posted By: l3ivo
    Deep Learning Interviews: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

    Shlomo Kashani, Amir Ivry, "Deep Learning Interviews: Hundreds of fully solved job interview questions from a wide range of key topics in AI."
    English | 2020 | ISBN: 1916243568 | 392 pages | EPUB | 5.26 MB

    Deep Learning Interviews is home to hundreds of fully-solved problems, from a wide range of key topics in AI. It is designed to both rehearse interview or exam specific topics and provide machine learning M.Sc./Ph.D. students, and those awaiting an interview a well-organized overview of the field. The problems it poses are tough enough to cut your teeth on and to dramatically improve your skills-but they’re framed within thought-provoking questions and engaging stories.

    That is what makes the volume so specifically valuable to students and job seekers: it provides them with the ability to speak confidently and quickly on any relevant topic, to answer technical questions clearly and correctly, and to fully understand the purpose and meaning of interview questions and answers. Those are powerful, indispensable advantages to have when walking into the interview room.

    The book’s contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.

    The book spans almost 400 pages
    Hundreds of fully-solved problems
    Problems from numerous areas of deep learning
    Clear diagrams and illustrations
    A comprehensive index
    Step-by-step solutions to problems
    Not just the answers given, but the work shown
    Not just the work shown, but reasoning given where appropriate

    This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the interview process is the most significant hurdle between you and a dream job. Even though you have the ability, the background, and the motivation to excel in your target position, you might need some guidance on how to get your foot in the door.

    Your curiosity will pull you through the book’s problem sets, formulas, and instructions, and as you progress, you’ll deepen your understanding of deep learning. There are intricate connections between calculus, logistic regression, entropy, and deep learning theory; work through the book, and those connections will feel intuitive.

    CORE SUBJECT AREAS (VOLUME-I):

    VOLUME-I of the book focuses on statistical perspectives and blends background fundamentals with core ideas and practical knowledge. There are dedicated chapters on:

    Information Theory
    Calculus & Algorithmic Differentiation
    Bayesian Deep Learning & Probabilistic Programming
    Logistic Regression
    Ensemble Learning
    Feature Extraction
    Deep Learning: expanded chapter (100+ pages)

    These chapters appear alongside numerous in-depth treatments of topics in Deep Learning with code examples in PyTorch, Python and C++.