Tags
Language
Tags
December 2024
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 1 2 3 4

Mod-ϕ Convergence: Normality Zones and Precise Deviations

Posted By: hill0
Mod-ϕ Convergence: Normality Zones and Precise Deviations

Mod-ϕ Convergence: Normality Zones and Precise Deviations (SpringerBriefs in Probability and Mathematical Statistics) by Valentin Feray
English | 4 Jan. 2017 | ISBN: 3319468219 | 164 Pages | PDF | 2.56 MB

The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy’s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-ϕ convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects.
Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples.