Dan Boneh, Victor Shoup, "A Graduate Course in Applied Cryptography"
2017 | e-book | ISBN-10: N/A | 832 pages | PDF | 25 MB
2017 | e-book | ISBN-10: N/A | 832 pages | PDF | 25 MB
This book covers many constructions of practical cryptosystems for different tasks in cryptography. It also presents many case studies to survey how deployed systems operate.
From the Preface:
Victor Shoup wrote:
Cryptography is an indispensable tool used to protect information in computing systems. It is used everywhere and by billions of people worldwide on a daily basis. It is used to protect data at rest and data in motion. Cryptographic systems are an integral part of standard protocols, most notably the Transport Layer Security (TLS) protocol, making it relatively easy to incorporate strong encryption into a wide range of applications.
While extremely useful, cryptography is also highly brittle. The most secure cryptographic system can be rendered completely insecure by a single specification or programming error. No amount of unit testing will uncover a security vulnerability in a cryptosystem.
Instead, to argue that a cryptosystem is secure, we rely on mathematical modeling and proofs to show that a particular system satisfies the security properties attributed to it. We often need to introduce certain plausible assumptions to push our security arguments through.
This book is about exactly that: constructing practical cryptosystems for which we can argue security under plausible assumptions. The book covers many constructions for different tasks in cryptography. For each task we define a precise security goal that we aim to achieve and then present constructions that achieve the required goal. To analyze the constructions, we develop a unified framework for doing cryptographic proofs. A reader who masters this framework will be capable of applying it to new constructions that may not be covered in the book.
Throughout the book we present many case studies to survey how deployed systems operate. We describe common mistakes to avoid as well as attacks on real-world systems that illustrate the importance of rigor in cryptography. We end every chapter with a fun application that applies the ideas in the chapter in some unexpected way.