2023 Numpy, Pandas And Matplotlib A-Z™: For Machine Learning
Last updated 1/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 4.30 GB | Duration: 11h 43m
Last updated 1/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 4.30 GB | Duration: 11h 43m
Python NumPy, Pandas, and Matplotlib for Data Analysis, Data Science and Machine Learning. Pre-machine learning Analysis
What you'll learn
Go from absolute beginner to become a confident Python NumPy, Pandas and Matplotlib user
Dare to get the most out of Python NumPy, Pandas and Matplotlib
Go deeper to understand complex topics in Python NumPy, Pandas and data visualisation
Learn Python NumPy, Pandas and Matplotlib through several exercises and solutions
Acquire the required Python NumPy, Pandas and Matplotlib knowledge you need to excel in Data Science, Machine Learning, Ai and Deep Learning
Be trained by expert
Requirements
Just a little knowledge of Python
Description
Welcome to NumPy, Pandas and Matplotlib A-Z™: for Machine LearningNumPy is a leading scientific computing library in Python while Pandas is for data manipulation and analysis. Also, learn to use Matplotlib for data visualization. Whether you are trying to go into Data Science, dive into machine learning, or deep learning, NumPy and Pandas are the top Modules in Python you should understand to make the journey smooth for you. In this course, we are going to start from the basics of Python NumPy and Pandas to the advanced NumPy and Pandas. This course will give you a solid understanding of NumPy, Pandas, and their functions.At the end of the course, you should be able to write complex arrays for real-life projects, manipulate and analyze real-world data using Pandas.WHO IS THIS COURSE FOR? √ This course is for you if you want to learn NumPy, Pandas, and Matplotlib for the first time or get a deeper knowledge of NumPy and Pandas to increase your productivity with deep and Machine learning.√ This course is for you if you are coming from other programming languages and want to learn Python NumPy and Pandas fast and know it really well.√ This course is for you if you are tired of NumPy, Pandas, and Matplotlib courses that are too brief, too simple, or too complicated.√ This course is for you if you want to build real-world applications using NumPy or Panda and visualize them with Matplotlib.√ This course is for you if you have to get the prerequisite knowledge to understanding Data Science and Machine Learning using NumPy and Pandas.√ This course is for you if you want to master the in-and-out of NumPy, Pandas, and data visualization.√ This course is for you if you want to learn NumPy and Pandas by doing exciting real-life challenges that will distinguish you from the crowd.√ This course is for you if plan to pass an interview soon.
Overview
Section 1: NumPy - Setups
Lecture 1 Course Syllabus Walkthrough
Lecture 2 Installing Jupiter Notebook
Lecture 3 Installing of NumPy
Lecture 4 Importing NumPy
Section 2: NumPy - Introduction
Lecture 5 What is NumPy
Lecture 6 What is Arrray
Lecture 7 Types of Array
Lecture 8 What is Dimension
Lecture 9 Exploring - Row Before Column - Why?
Lecture 10 Identifying an Array
Lecture 11 Scalar vs Vector vs Matrix vs Tensor
Section 3: NumPy - Creating Arrays
Lecture 12 First Time Creating an Array
Lecture 13 Creating an Array from a Tuple
Lecture 14 Creating a Zero Dimensional Array
Lecture 15 Avoiding Errors of "Multiple Arguments"
Lecture 16 Creating a 1-D Array
Lecture 17 Creating a 2-D Array
Lecture 18 Creating a 3-D Array
Section 4: NumPy - Data Type
Lecture 19 Understanding NumPy Data Type
Lecture 20 Forcing a Data Type of an Array
Section 5: NumPy - Challenges and Solution - Creating Arrays
Lecture 21 The Challenges
Lecture 22 The Challenges - text
Lecture 23 Solution to Challenge 1a
Lecture 24 Solution to Challenge 1b
Lecture 25 Solution to Challenge 1c
Lecture 26 Solution to Challenge 1d
Lecture 27 Solution to Challenge 1e
Lecture 28 Solution to Challenge 2a
Lecture 29 Solution to Challenge 2b
Lecture 30 Solution to Challenge 2c
Lecture 31 Solution to Challenge 2d
Lecture 32 Solution to Challenge 2e
Lecture 33 Solution to Challenge 2f
Section 6: NumPy - Creating Arrays - (Others)
Lecture 34 Array of Zeros
Lecture 35 Arrays of Ones
Lecture 36 Empty Arrays
Lecture 37 How to use arange()
Lecture 38 How to use linspace()
Lecture 39 How to use reshape()
Section 7: NumPy - Attributes of an Array
Lecture 40 How to find the attributes of an Array - (ndim, shape, size, dtype, itemsize)
Section 8: NumPy - Challenges and Solutions - Creating Arrays (More)
Lecture 41 The Challenges
Lecture 42 The Challenges - Text
Lecture 43 Solution to Challenge 1a
Lecture 44 Solution to Challenge 1b
Lecture 45 Solution to Challenge 1c
Lecture 46 Solution to Challenge 2a
Lecture 47 Solution to Challenge 2b
Lecture 48 Solution to Challenge 2c
Lecture 49 Solution to Challenge 2d
Lecture 50 Solution to Challenge 2e
Lecture 51 Solution to Challenge 2f
Lecture 52 Solution to Challenge #3
Lecture 53 Solution to Challenge #4
Section 9: NumPy - Array Sorting and Concatenation
Lecture 54 Array Sorting
Lecture 55 Array Concatenation
Section 10: NumPy - 1-D Array Indexing and Slicing
Lecture 56 Understanding how indexing and Slicing work on 1-D Arrays
Section 11: NumPy - Challenges and Solution - 1-D Array Indexing & Slicing
Lecture 57 The Challenges
Lecture 58 The Challenges - Text
Lecture 59 Solution to Challenge 1a
Lecture 60 Solution to Challenge 1b
Lecture 61 Solution to Challenge 1c
Lecture 62 Solution to Challenge 1d
Lecture 63 Solution to Challenge 1e
Lecture 64 Solution to Challenge 1f
Lecture 65 Solution to Challenge 1g
Lecture 66 Solution to Challenge 1h
Lecture 67 Solution to Challenge 1i
Lecture 68 Solution to Challenge 1j
Lecture 69 Solution to Challenge 1k
Lecture 70 Solution to Challenge 1l
Lecture 71 Solution to Challenge 1m
Section 12: NumPy - Creating an Array from Existing Array
Lecture 72 With Less Than, Greater Than or Equal To
Lecture 73 Even and Odd Numbers
Lecture 74 Two Conditions
Section 13: NumPy - Challenges and Solutions - Creating an Array from Existing Array
Lecture 75 The Challenges
Lecture 76 The Challenges - Text
Lecture 77 Solution to Challenge #1
Lecture 78 Solution to Challenge #2
Lecture 79 Solution to Challenge #3
Lecture 80 Solution to Challenge #4
Lecture 81 Solution to Challenge #5
Section 14: NumPy - 2-D Array Indexing and Slicing
Lecture 82 Selecting Elements of 2-D Array
Lecture 83 Slicing In 2-D Array
Section 15: NumPy - Challenges and Solution - 2-D Array Indexing & Slicing
Lecture 84 The Challenges
Lecture 85 The Challenges - Text
Lecture 86 Solution to Challenge #1
Lecture 87 Solution to Challenge #2
Lecture 88 Solution to Challenge #3
Lecture 89 Solution to Challenge #4
Lecture 90 Solution to Challenge #5
Lecture 91 Solution to Challenge #6
Lecture 92 Solution to Challenge #7
Section 16: NumPy - 3D Indexing and Slicing
Lecture 93 Selecting Elements of 3-D Array
Lecture 94 Slicing a 3-D Array
Lecture 95 More on Slicing
Section 17: NumPy - Challenges and Solution - 3-D Array Indexing & Slicing
Lecture 96 The Challenges
Lecture 97 The Challenges - Text
Lecture 98 Solution to Challenge #1
Lecture 99 Solution to Challenge #2
Lecture 100 Solution to Challenge #3
Lecture 101 Solution to Challenge #4
Lecture 102 Solution to Challenge #5
Lecture 103 Solution to Challenge #6
Lecture 104 Solution to Challenge #7
Lecture 105 Solution to Challenge #8
Lecture 106 Solution to Challenge #9
Lecture 107 Solution to Challenge #10
Lecture 108 Solution to Challenge #11
Lecture 109 Solution to Challenge #12
Lecture 110 Solution to Challenge #13
Lecture 111 Solution to Challenge #14
Lecture 112 Solution to Challenge #15
Lecture 113 Solution to Challenge #16
Lecture 114 Solution to Challenge #17
Section 18: NumPy - Summary - Selecting Element From Any n-D Array
Lecture 115 Summary on Selecting Element From any Dimensional Array
Section 19: NumPy - Array Flatten and Ravel
Lecture 116 Understanding Array Flatten and Ravel
Section 20: NumPy - Transpose
Lecture 117 Understanding Array Transpose
Section 21: NumPy - Reverse
Lecture 118 Understanding How to Reverse an Array
Lecture 119 Understanding How to Reverse Along an Axis
Section 22: NumPy - Unique Array
Lecture 120 Creating a Unique Array
Lecture 121 Indexing a Unique Array
Section 23: NumPy - Maximum, Minimum and Sum of an Array
Lecture 122 Minimum, Maximum & Sum
Lecture 123 Minimum, Maximum and Sum Along an Axis
Section 24: NumPy - Stacking
Lecture 124 Array Stacking
Section 25: NumPy - Splitting an Array
Lecture 125 Splitting an Array
Lecture 126 Splitting an Array on a Specific Column
Section 26: NumPy - Copying an Array
Lecture 127 Understand how to Copy an Array
Lecture 128 Understand how to Copy an Array II
Section 27: NumPy - Array Operators
Lecture 129 Understanding Array Operators
Section 28: NumPy - Deleting Elements
Lecture 130 How to delete Array Element I
Lecture 131 How to delete Array Element II
Lecture 132 Challenge & Solution I
Lecture 133 Challenge & Solution II
Lecture 134 Challenge & Solution III
Lecture 135 Challenge & Solution III - Code
Lecture 136 Challenge Yourself
Lecture 137 Solution - Challenge Yourself
Section 29: NumPy - Appending and Inserting Elements Into an Array
Lecture 138 How to append & Insert an Element Into An Array
Lecture 139 How to append & Insert Elements Into An Array
Section 30: NumPy - Newaxis
Lecture 140 Understanding Newaxis
Section 31: NumPy - Trigonometric Function
Lecture 141 Understanding NumPy Trigonometric Function
Lecture 142 Understanding NumPy Trigonometric Function
Section 32: NumPy - Searching Array
Lecture 143 Understanding How to Search an Array
Section 33: NumPy - Array Multiplication
Lecture 144 Array Multiplication by a Single Number
Lecture 145 Understanding dot()
Lecture 146 Challenge & Solution
Section 34: NumPy - Trace
Lecture 147 Understanding Trace
Lecture 148 Challenge & Solution
Section 35: NumPy - Outer Product
Lecture 149 Understanding Outer Product
Lecture 150 Challenge & Solution
Section 36: NumPy - Inner Product
Lecture 151 Understanding Inner Product
Section 37: NumPy - Cross Product
Lecture 152 Understanding Cross Product
Lecture 153 Challenge & Solution - I
Lecture 154 Challenge & Solution - II
Section 38: NumPy - Kronecker Product
Lecture 155 Understanding Kronecker Product
Section 39: NumPy - Determinant
Lecture 156 Understanding Determinant
Lecture 157 Challenge & Solution - 2 by 2
Lecture 158 Challenge & Solution - 3 by 3
Section 40: NumPy - Inverse of Array
Lecture 159 Understanding Inverse of Array
Lecture 160 Challenge & Solution
Section 41: NumPy - Condition Number
Lecture 161 Understanding the Condition Number
Section 42: NumPy - Random Sub-Module
Lecture 162 Random Number (Integer)
Lecture 163 Random Number (Float)
Lecture 164 Random Arrays
Lecture 165 Random Choice
Lecture 166 Choice with 2-D and 3-D Array
Section 43: NumPy - Seed
Lecture 167 Understanding Random Seed
Lecture 168 Random Seed With Choice()
Section 44: NumPy - Data Distribution
Lecture 169 What is Data Distribution?
Lecture 170 What is Random Distribution?
Lecture 171 Random Distribution 2-D and 3-D Array
Section 45: NumPy - Data Visualisation
Lecture 172 NumPy vs MatPlotLib vs Seaborn
Lecture 173 Installation of MatPlotLib and Seaborn
Lecture 174 Challenge & Solution 1
Lecture 175 Challenge & Solution II
Section 46: NumPy - Normal Distribution & Visualisation
Lecture 176 What is Normal Distribution
Lecture 177 Normal Distribution Visualisation
Section 47: NumPy - Binomial Distribution
Lecture 178 Binomial Distribution
Lecture 179 Binomial Data Visualisation
Section 48: Pandas - Intro, Installation & DataFrame
Lecture 180 Pandas Introduction
Lecture 181 Pandas Installation & Import
Lecture 182 Pandas DataFrame
Section 49: Resources Used for Pandas
Lecture 183 Happiness Data Set
Lecture 184 Sales Data Set
Lecture 185 Northwind Database
Lecture 186 Cities Data Set
Section 50: Pandas - Series
Lecture 187 Understanding Pandas Series
Section 51: Pandas - Label
Lecture 188 Understanding Pandas Label
Lecture 189 Creating Series From Dictionary
Section 52: Pandas - DataFrame
Lecture 190 Introduction to DataFrame in Pandas
Lecture 191 Loc
Lecture 192 Challenge & Solution
Section 53: Pandas - Concatenation
Lecture 193 Pandas - Understanding Concat in Pandas
Lecture 194 Pandas - Understanding Concat in Pandas - Code
Lecture 195 Pandas - Adding Hierarchy
Lecture 196 Pandas - Adding Hierarchy - Code
Lecture 197 Pandas - Concat Label
Lecture 198 Pandas - Concat Label - Code
Lecture 199 Pandas - Challenge & Solution
Lecture 200 Pandas - Challenge & Solution - Code
Lecture 201 Pandas - Concat Columns of Different Sizes
Lecture 202 Pandas - Concat Columns of Different Sizes - Code
Lecture 203 Pandas - Concat along axis
Lecture 204 Pandas - Concat along axis - Code
Section 54: Pandas - Merge
Lecture 205 Pandas - Understanding Merge
Lecture 206 Pandas - Understanding Merge - Code
Lecture 207 Pandas - Merging DataFrame of Different Sizes
Lecture 208 Pandas - Merging DataFrame of Different Sizes - Code
Lecture 209 Pandas - Inner, Outer, Left and Right Join
Lecture 210 Pandas - Inner, Outer, Left and Right Join - Code
Lecture 211 Pandas - Merge Suffix
Lecture 212 Pandas - Merge Suffix - Code
Section 55: Pandas - Load CSV
Lecture 213 Load CSV in Pandas
Section 56: Pandas - Aggregate & Statistics (Min, Max, Sum, Mean, Median, Mode, Summary)
Lecture 214 Pandas - Minimum and Maximum
Lecture 215 Pandas - Minimum and Maximum - Singapore
Lecture 216 Pandas - Mean, Median & Mode
Lecture 217 Pandas - Mean, Median & Mode - Mexico
Lecture 218 Pandas - Sum
Lecture 219 Challenge & Solution
Lecture 220 Pandas - Statistical Summary
Lecture 221 Pandas - Count
Section 57: Pandas - JSON
Lecture 222 Pandas - Load JSON
Section 58: Pandas - Challenges & Solutions
Lecture 223 1 - Pandas Challenge & Solution - Import
Lecture 224 2 - Pandas Challenge & Solution - Data Set Inspection - Shape, DataType & Column
Lecture 225 3 - Challenge & Solution - Skip Rows Reading CSV File
Lecture 226 3 - Challenge & Solution - Skip Rows Reading CSV File - Code
Lecture 227 4 - Challenge & Solution - Skip Rows Keep Headers
Lecture 228 4 - Challenge & Solution - Skip Rows Keep Headers - Code
Lecture 229 5 - Challenge & Solution - Read CSV Without Header
Lecture 230 5 - Challenge & Solution - Read CSV Without Header - Code
Lecture 231 6 - Challenge & Solution - Subset of Column
Lecture 232 6 - Challenge & Solution - Subset of Column - Code
Lecture 233 7 - Challenge & Solution - Few Rows
Lecture 234 7 - Challenge & Solution - Few Rows - Code
Lecture 235 8 - Challenge & Solution - Few Rows, Few Columns
Lecture 236 8 - Challenge & Solution - Few Rows, Few Columns - Code
Lecture 237 9 - Challenge & Solution - Time to Import
Lecture 238 9 - Challenge & Solution - Time to Import- Code
Lecture 239 10 - Challenge & Solution - Changing Data Type
Lecture 240 10 - Challenge & Solution - Changing Data Type - Code
Section 59: Pandas - Challenges & Solutions
Lecture 241 Pandas - Summary of Data Set
Lecture 242 Pandas - Summary of Data Set - Code
Lecture 243 Pandas - Subset of Column
Lecture 244 Pandas - Subset of Column - Code
Lecture 245 Pandas - Total number of Columns and Rows
Lecture 246 Pandas - Total number of Columns and Rows - Code
Lecture 247 Pandas - Last Ten Rows
Lecture 248 Pandas - Last Ten Rows - Code
Section 60: Pandas - Challenges & Solutions
Lecture 249 Pandas - Difference between Loc and iloc
Lecture 250 Pandas - Difference between Loc and iloc - more
Lecture 251 Pandas - Difference between head and tail
Lecture 252 Pandas - Difference between head and tail - Code
Lecture 253 Pandas - Using Head, Loc & iLoc to Achieve the Same Result
Lecture 254 Pandas - Using Head, Loc & iLoc to Achieve the Same Result - Code
Lecture 255 Pandas - Using tail, loc and iloc for last row
Lecture 256 Pandas - Using tail, loc and iloc for last row - Code
Section 61: Pandas - Challenges & Solutions
Lecture 257 Pandas - iloc & loc
Lecture 258 Pandas - iloc & loc - code
Lecture 259 Pandas - Without Using Tail or iLoc Get Last Row
Lecture 260 Pandas - Without Using Tail or iLoc Get Last Row - Code
Lecture 261 Pandas - Using Range
Lecture 262 Pandas - Using Range - Code
Lecture 263 Pandas - Another Selection Trick
Lecture 264 Pandas - Another Selection Trick - Code
Section 62: Pandas - Challenges & Solutions
Lecture 265 Pandas - Even Columns
Lecture 266 Pandas - Even Columns - Code
Lecture 267 Pandas - Even Columns Without Using Range
Lecture 268 Pandas - Even Columns Without Using Range - Code
Lecture 269 Pandas - Specific Row
Lecture 270 Pandas - Specific Row - Code
Lecture 271 Pandas - Column
Lecture 272 Pandas - Column - Code
Lecture 273 Pandas - Filtering Greater Than
Lecture 274 Pandas - Filtering Greater Than - Code
Lecture 275 Pandas - Filtering Greater Than with Fewer Rows
Lecture 276 Pandas - Filtering Greater Than with Fewer Rows - Code
Section 63: Pandas - Challenges & Solutions
Lecture 277 Pandas - nlargest
Lecture 278 Pandas - nlargest - Code
Lecture 279 Pandas - nsmallest
Lecture 280 Pandas - nsmallest - Code
Lecture 281 Pandas - Sort_Values Ascending
Lecture 282 Pandas - Sort_Values Ascending - Code
Lecture 283 Pandas - Sort_Values for Smallest
Lecture 284 Pandas - Sort_Values for Smallest - Code
Lecture 285 Pandas - Selecting a range of values
Lecture 286 Pandas - Selecting a range of values - Code
Lecture 287 Pandas - Return Random Rows
Lecture 288 Pandas - Return Random Rows - Code
Section 64: Pandas - Challenges & Solutions
Lecture 289 Pandas - Reset Index
Lecture 290 Pandas - Reset Index - Code
Lecture 291 Pandas - Greater than 0.1
Lecture 292 Pandas - Greater than 0.1 - Code
Lecture 293 Pandas - Selecting with given Columns and Rows
Lecture 294 Pandas - Selecting with given Columns and Rows - Code
Lecture 295 Pandas - Selecting Data with Loc & Slicing
Lecture 296 Pandas - Selecting Data with Loc & Slicing - Code
Lecture 297 Pandas - Many ways of Retrieving Column
Lecture 298 Pandas - Many ways of Retrieving Column - Code
Lecture 299 Pandas - Select Data related to Singapore
Lecture 300 Pandas - Select Data related to Singapore - Code
Lecture 301 Pandas - Select years after 2019
Lecture 302 Pandas - Select years after 2019 - Code
Lecture 303 Pandas - Generosity between two values
Lecture 304 Pandas - Generosity between two values - Code
Lecture 305 Pandas - Life expectancy below 40
Lecture 306 Pandas - Life expectancy below 40 - Code
Lecture 307 Pandas - Using columns to set condition
Lecture 308 Pandas - Using columns to set condition - Code
Lecture 309 Pandas - Zimbabwe & Singapore
Lecture 310 Pandas - Zimbabwe & Singapore - Code
Section 65: Pandas - Data Cleaning
Lecture 311 Introduction
Lecture 312 Pandas - Checking for NaN
Lecture 313 Pandas - Checking for NaN - Code
Lecture 314 Pandas - Removing NaN
Lecture 315 Pandas - Removing NaN - Code
Lecture 316 Pandas - Removing NaN II
Lecture 317 Pandas - Replacing NaN with a value
Lecture 318 Pandas - Replacing NaN with a value - Code
Lecture 319 Pandas - Replacing NaN in one Column
Lecture 320 Pandas - Replacing NaN in one Column - Code
Lecture 321 Pandas - Replacing NaN with mean, mode & median
Lecture 322 Pandas - Data Cleaning - Sales
Lecture 323 Pandas - Data Cleaning - Sales -Code
Section 66: Pandas - GroupBy
Lecture 324 Pandas - GroupBy Intro
Lecture 325 Pandas - GroupBy Intro - Code
Lecture 326 Pandas - GroupBy Challenge & Solution
Lecture 327 Pandas - GroupBy Challenge & Solution - Code
Section 67: Pandas with SQL
Lecture 328 Installation, Connection & Import
Lecture 329 Installation, Connection & Import - Code
Lecture 330 Importing Fewer Columns From SQL to Pandas
Lecture 331 Importing Fewer Columns From SQL to Pandas - Code
Lecture 332 Querying SQL Database from Pandas
Lecture 333 Querying SQL Database from Pandas - Code
Lecture 334 Creating Table in SQL from Pandas
Lecture 335 Creating Table in SQL from Pandas - Code
Lecture 336 read_sql() method - A two in one Method
Lecture 337 read_sql() method - A two in one Method - Code
Section 68: Pandas with Excel
Lecture 338 Pandas - Importing Excel File
Lecture 339 Pandas - Importing Excel File - Code
Lecture 340 Pandas - Cleaning Excel Data Set While Importing
Lecture 341 Pandas - Cleaning Excel Data Set While Importing - Code
Lecture 342 Pandas - Saving an Excel File
Lecture 343 Pandas - Saving an Excel File - Code
Lecture 344 Pandas _ Save Excel File Without Index
Lecture 345 Pandas _ Save Excel File Without Index - Code
Lecture 346 Pandas - Shifting an Excel Sheet
Lecture 347 Pandas - Shifting an Excel Sheet - Code
Section 69: Matplotlib - Introduction
Lecture 348 Matplotlib - What is Matplotlib
Lecture 349 Matplotlib - Installation
Section 70: Matplotlib - Plot
Lecture 350 Matplotlib - Understaning Plot
Lecture 351 Matplotlib - Understaning Plot
Lecture 352 Matplotlib - dot, x, square
Lecture 353 Matplotlib - dot, x, square - Code
Lecture 354 Matplotlib - Plotting Multiple Points
Lecture 355 Matplotlib - Plotting Multiple Points - Code
Lecture 356 Matplotlib - Plotting Without x-axis
Lecture 357 Matplotlib - Plotting Without x-axis - Code
Section 71: Matplotlib - Markers
Lecture 358 Matplotlib - Understanding Markers
Lecture 359 Matplotlib - Format String
Lecture 360 Matplotlib - Marker Size
Lecture 361 Matplotlib - Marker Colour
Lecture 362 Matplotlib - Range of Marker Colours
Section 72: Matplotlib - Line
Lecture 363 Matplotlib - Line Style
Lecture 364 Matplotlib - Line Colours
Lecture 365 Matplotlib - Line Width
Lecture 366 Matplotlib - Multiple Lines
Lecture 367 Matplotlib - Multiple Lines More
Section 73: Matplotlib - Figure
Lecture 368 Matplotlib - Understanding Figure
Section 74: Matplotlib - Label & Title
Lecture 369 Matplotlib - Loc
Lecture 370 Matplotlib - Label
Lecture 371 Matplotlib - Title
Lecture 372 Matplotlib - Font Properties
Section 75: Matplotlib - Legend
Lecture 373 Matplotlib - Understanding Legend
Lecture 374 Matplotlib - Understanding Legend - More
Lecture 375 Matplotlib - Legend Repositioning
Lecture 376 Matplotlib - Legend Outside
Section 76: Matplotlib - Grid
Lecture 377 Matplotlib - Understanding Grid
Lecture 378 Matplotlib - Grid Properties
Section 77: Matplotlib - SubPlot
Lecture 379 Matplotlib - Understanding Subplot
Lecture 380 Matplotlib - Understanding Subplot - More
Lecture 381 Matplotlib - Subplot title and Super title
Section 78: Matplotlib - Scatter Plot
Lecture 382 Matplotlib - Understanding Scatter Plot
Lecture 383 Matplotlib - Scatter Plot - Colour Dots
Lecture 384 Matplotlib - Scatter Plot - Size of Dots
Lecture 385 Matplotlib - Scatter Plot - Size of Dots - Code
Lecture 386 Matplotlib - Scatter Plot - Colour Map
Lecture 387 Matplotlib - Scatter Plot - Colour Map - Code
Lecture 388 Matplotlib - Scatter Plot - Alpha
Lecture 389 Matplotlib - Scatter Plot - Groups
Lecture 390 Matplotlib - Scatter Plot - Groups - Code
Lecture 391 Matplotlib - Scatter Plot - 20 Random Circles
Section 79: Matplotlib - Pie
Lecture 392 Matplotlib - Introduction to Pie Chart
Lecture 393 Matplotlib - Pie - Label
Lecture 394 Matplotlib - Pie - Legend
Lecture 395 Matplotlib - Pie - Legend | Title
Lecture 396 Matplotlib - Pie - Explode
Lecture 397 Matplotlib - Shadow for Widget
Lecture 398 Matplotlib - Pie - Colour
Section 80: Matplotlib - Bar
Lecture 399 Matplotlib - Understanding Bar Chart
Lecture 400 Matplotlib - Bar - Increasing & Reducing Font Size
Lecture 401 Matplotlib - Bar - Increasing & Reducing Font Size - Code
Lecture 402 Matplotlib - Bar - Changing Specific Bar Colour
Lecture 403 Matplotlib - Bar - Changing Specific Bar Colour - Code
Section 81: Matplotlib - 3D
Lecture 404 Matplotlib - 3D - Introduction
Lecture 405 Matplotlib - 3D - Introduction - Code
Lecture 406 Matplotlib - 3D with Scatter Plot
Lecture 407 Matplotlib - 3D with Scatter Plot - Code
Section 82: Matplotlib - Trigonometric Plotting
Lecture 408 Understanding Trigonometric (Sin, Cos & Tan) Plotting
Lecture 409 Understanding Trigonometric (Sin, Cos & Tan) Plotting - Code
Section 83: Matplotlib - Challenges & Solutions - Lines
Lecture 410 Challenge & Solution - 1
Lecture 411 Challenge & Solution - 1 - Code
Lecture 412 Challenge & Solution - 2
Lecture 413 Challenge & Solution - 2 - Code
Lecture 414 Challenge & Solution - 3
Lecture 415 Challenge & Solution - 3 - Code
Lecture 416 Challenge & Solution - 4
Lecture 417 Challenge & Solution - 4 - Code
Lecture 418 Challenge & Solution - 5
Lecture 419 Challenge & Solution - 5 - Code
Lecture 420 Challenge & Solution - 6
Lecture 421 Challenge & Solution - 6- Code
Section 84: Matplotlib - Challenge & Solution - Figure
Lecture 422 Challenge & Solution
Lecture 423 Challenge & Solution - Code
Section 85: Matplotlib - Challenge & Solution - Subplot
Lecture 424 Challenge & Solution
Lecture 425 Challenge & Solution - Code
Section 86: Matplotlib - Challenges & Solutions - Bar Chart
Lecture 426 Challenge & Solution - 1
Lecture 427 Challenge & Solution - 1 - Code
Lecture 428 Challenge & Solution - 2
Lecture 429 Challenge & Solution - 2 - Code
Lecture 430 Challenge & Solution - 3
Lecture 431 Challenge & Solution - 3 - Code
Lecture 432 Challenge & Solution - 4
Lecture 433 Challenge & Solution - 4 - Code
Section 87: Matplotlib - Challenges & Solution - Pie Chart
Lecture 434 Challenge & Solution - 1
Lecture 435 Challenge & Solution - 1 - Code
Lecture 436 Challenge & Solution - 2
Lecture 437 Challenge & Solution - 2 - Code
Lecture 438 Challenge & Solution - 3
Lecture 439 Challenge & Solution - 3 - Code
Section 88: Matplotlib - Challenge & Solution - 3D
Lecture 440 Challenge & Solution
Lecture 441 Challenge & Solution - Code
Section 89: Matplotlib - More Challenges & Solutions
Lecture 442 Challenge & Solution - 1
Lecture 443 Challenge & Solution - 1 - Code
Lecture 444 Challenge & Solution - 2
Lecture 445 Challenge & Solution - 2 - Code
Section 90: Recommended Course
Lecture 446 Mathematics, Probability & Statistics for Machine Learning
Section 91: Bonus Section
Lecture 447 Please check out my other courses
All levels of students