Synthetic Vision: Using Volume Learning and Visual DNA
De Gruyter | English | 2018 | ISBN-10: 1501515179 | 368 pages | PDF/ePUB | 8.57/83.58 MB
De Gruyter | English | 2018 | ISBN-10: 1501515179 | 368 pages | PDF/ePUB | 8.57/83.58 MB
by Scott Krig (Author)
In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author’s synthetic visual pathway model includes the eye, LGN, visual cortex, and the high level PFC learning centers. The corresponding visual genome model (VGM), begun in 2014, is introduced herein as the basis for a visual genome project analogous to the Human Genome Project funded by the US government. The VGM introduces volume learning principles and Visual DNA (VDNA) taking a multivariate approach beyond deep neural networks. Volume learning is modeled as programmable learning and reasoning agents, providing rich methods for structured agent classification networks. Volume learning incorporates a massive volume of multivariate features in various data space projections, collected into strands of Visual DNA, analogous to human DNA genes. VGM lays a foundation for a visual genome project to sequence VDNA as visual genomes in a public database, using collaborative research to move synthetic vision science forward and enable new applications. Scott Krig founded Krig Research in 1988, providing some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Krig has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision
About the Author
Scott Krig founded Krig Research in 1988, providing some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Scott has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision. Scott is the author of several books, articles and papers, and studied at Stanford
Feel Free to contact me for book requests, informations or feedbacks.