Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    KoalaNames.com
    What’s in a name? More than you think.

    Your name isn’t just a label – it’s a vibe, a map, a story written in stars and numbers.
    At KoalaNames.com, we’ve cracked the code behind 17,000+ names to uncover the magic hiding in yours.

    ✨ Want to know what your name really says about you? You’ll get:

    🔮 Deep meaning and cultural roots
    ♈️ Zodiac-powered personality insights
    🔢 Your life path number (and what it means for your future)
    🌈 Daily affirmations based on your name’s unique energy

    Or flip the script – create a name from scratch using our wild Name Generator.
    Filter by star sign, numerology, origin, elements, and more. Go as woo-woo or chill as you like.

    💥 Ready to unlock your name’s power?

    👉 Tap in now at KoalaNames.com

    Singularities of Differentiable Maps, Volume 2: Monodromy and Asymptotics of Integrals (Repost)

    Posted By: AvaxGenius
    Singularities of Differentiable Maps, Volume 2: Monodromy and Asymptotics of Integrals (Repost)

    Singularities of Differentiable Maps, Volume 2: Monodromy and Asymptotics of Integrals by V.I. Arnold , S.M. Gusein-Zade , A.N. Varchenko
    English | PDF (True) | 2012 | 500 Pages | ISBN : 0817683429 | 60.1 MB

    ​​The present volume is the second in a two-volume set entitled Singularities of Differentiable Maps. While the first volume, subtitled Classification of Critical Points and originally published as Volume 82 in the Monographs in Mathematics series, contained the zoology of differentiable maps, that is, it was devoted to a description of what, where, and how singularities could be encountered, this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered are about the structure of singularities and how they function.
    Thanks For Buying/Renewing Premium From My Blog Links To Support
    Without You And Your Support We Can't Continue