Tags
Language
Tags
November 2024
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Quantitative Approaches to Microcirculation: Mathematical Models, Computational Methods and Data Analysis

Posted By: AvaxGenius
Quantitative Approaches to Microcirculation: Mathematical Models, Computational Methods and Data Analysis

Quantitative Approaches to Microcirculation: Mathematical Models, Computational Methods and Data Analysis by Andreas Linninger, Kent-Andre Mardal, Paolo Zunino
English | PDF EPUB (True) | 2024 | 224 Pages | ISBN : 3031585186 | 49.3 MB

Microcirculation is a key area of interest within the realms of biology and medicine. As a vital discipline, microcirculatory biology forms a significant part of established medical fields like cardiovascular medicine and oncology, and is increasingly relevant in emerging fields such as neuroscience. With its multifaceted nature, the study of microcirculation has evolved from basic observations and experiments to embrace cutting-edge imaging technologies, quantitative methods, and the power of data science. This volume brings together a series of insightful chapters that highlight the latest trends in modeling microcirculation. It casts a spotlight on the vital role of microcirculation in brain function modeling and the innovative applications of microvascular models in oncology. Readers will be introduced to state-of-the-art methodologies of microcirculation modeling. A key focus is on mixed-dimensional models, mathematical methods adept at describing complex interactions within lower dimensional manifolds. Each chapter thoughtfully navigates the mathematical, computational, and practical challenges of these approaches, underscoring their effectiveness in capturing the essence of microcirculation. This book offers a window into the latest advancements and methodologies that are shaping the future of this vital field.
Thanks For Buying/Renewing Premium From My Blog Links To Support
Without You And Your Support We Can't Continue